These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6800069)

  • 21. Strong myotoxic activity of Trimeresurus malabaricus venom: role of metalloproteases.
    Gowda CD; Rajesh R; Nataraju A; Dhananjaya BL; Raghupathi AR; Gowda TV; Sharath BK; Vishwanath BS
    Mol Cell Biochem; 2006 Jan; 282(1-2):147-55. PubMed ID: 16317522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and biochemical characterization of a novel hemorrhagic metalloproteinase from horned viper (Cerastes cerastes) venom.
    Boukhalfa-Abib H; Meksem A; Laraba-Djebari F
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Aug; 150(2):285-90. PubMed ID: 19470410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study of the biological properties of some sea snake venoms.
    Tan NH; Ponnudurai G
    Comp Biochem Physiol B; 1991; 99(2):351-4. PubMed ID: 1764914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further characterization of the anticoagulant proteinase, cerastase F-4 from Cerastes cerastes (Egyptian sand viper) venom.
    Daoud EW; Halim HY; Shaban EA; el-Asmar MF
    Toxicon; 1987; 25(8):891-7. PubMed ID: 3118514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Snake venom hemorrhagic and nonhemorrhagic metalloendopeptidases.
    Takeya H; Miyata T; Nishino N; Omori-Satoh T; Iwanaga S
    Methods Enzymol; 1993; 223():365-78. PubMed ID: 8271966
    [No Abstract]   [Full Text] [Related]  

  • 26. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity.
    Gopi K; Anbarasu K; Renu K; Jayanthi S; Vishwanath BS; Jayaraman G
    Biochim Biophys Acta; 2016 Jul; 1860(7):1528-40. PubMed ID: 27033089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory potential of three zinc chelating agents against the proteolytic, hemorrhagic, and myotoxic activities of Echis carinatus venom.
    Nanjaraj Urs AN; Yariswamy M; Ramakrishnan C; Joshi V; Suvilesh KN; Savitha MN; Velmurugan D; Vishwanath BS
    Toxicon; 2015 Jan; 93():68-78. PubMed ID: 25447774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prothrombin and factor X activating properties of Bothrops erythromelas venom.
    Maruyama M; Kamiguti AS; Tomy SC; Antonio LC; Sugiki M; Mihara H
    Ann Trop Med Parasitol; 1992 Oct; 86(5):549-56. PubMed ID: 1288438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors.
    Salazar AM; Aguilar I; Guerrero B; Girón ME; Lucena S; Sánchez EE; Rodríguez-Acosta A
    Blood Coagul Fibrinolysis; 2008 Sep; 19(6):525-30. PubMed ID: 18685436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of toxic activities of Bothrops asper venom and other crotalid snake venoms by a novel neutralizing mixture.
    Borkow G; Gutierrez JM; Ovadia M
    Toxicol Appl Pharmacol; 1997 Dec; 147(2):442-7. PubMed ID: 9439739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-necrosis potential of polyphenols against snake venoms.
    Leanpolchareanchai J; Pithayanukul P; Bavovada R
    Immunopharmacol Immunotoxicol; 2009; 31(4):556-62. PubMed ID: 19874222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of human plasma alpha2 macroglobulin on the proteolytic activity of snake venoms.
    Kress LF; Catanese JJ
    Toxicon; 1981; 19(4):501-7. PubMed ID: 6173937
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of metabolic activators, inhibitors and drugs on the proteolytic activity of Entamoeba histolytica.
    Kalra IS; Sabri MI; Dutta GP; Rao VK
    Zentralbl Bakteriol Orig; 1970; 213(1):135-41. PubMed ID: 4318267
    [No Abstract]   [Full Text] [Related]  

  • 34. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling.
    Pereañez JA; Patiño AC; Rey-Suarez P; Núñez V; Henao Castañeda IC; Rucavado A
    Toxicon; 2013 Sep; 71():41-8. PubMed ID: 23726855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study on hemorrhagic and proteolytic activities of snake venoms.
    Huang SY; Perez JC
    Toxicon; 1980; 18(4):421-6. PubMed ID: 7010684
    [No Abstract]   [Full Text] [Related]  

  • 36. Red blood cell aggregation by Trimeresurus mucrosquamatus snake venom.
    Ouyang C; Teng CM
    Toxicon; 1978; 16(5):503-8. PubMed ID: 99846
    [No Abstract]   [Full Text] [Related]  

  • 37. What is the rabbit skin method by Kondo et al. (1960) for determining hemorrhagic activities of snake venoms?
    Takahashi M; Omori-Satoh T
    Toxicon; 2002 Jul; 40(7):1061. PubMed ID: 12076663
    [No Abstract]   [Full Text] [Related]  

  • 38. Neurotoxic, hemorrhagic and proteolytic activities of Duvernoy's gland secretion from Venezuelan opisthoglyphous colubrid snakes in mice.
    Lemoine K; Salgueiro LM; Rodríguez-Acosta A; Acosta JA
    Vet Hum Toxicol; 2004 Feb; 46(1):10-4. PubMed ID: 14748408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle extract of hedgehog, Erinaceus europaeus, inhibits hemorrhagic activity of snake venoms.
    Omori-Satoh T; Nagaoka Y; Mebs D
    Toxicon; 1994 Oct; 32(10):1279-81. PubMed ID: 7846699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a Simple Permeability Assay Method for Snake Venom-induced Vascular Damage.
    Sato K; Kodama A; Kase C; Hirakawa S; Ato M
    Anal Sci; 2018; 34(3):323-327. PubMed ID: 29526900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.