These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 6800571)

  • 1. [Ultrastructural visualization of binding and internalization of cholera and tetanuts toxins].
    Montesano R; Roth J; Robert A; Orci L
    C R Seances Acad Sci III; 1981 Nov; 293(10):563-6. PubMed ID: 6800571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins.
    Montesano R; Roth J; Robert A; Orci L
    Nature; 1982 Apr; 296(5858):651-3. PubMed ID: 7070509
    [No Abstract]   [Full Text] [Related]  

  • 3. On the similarity of tetanus and cholera toxins.
    van Heyningen WE
    Naunyn Schmiedebergs Arch Pharmacol; 1973; 276(3-4):289-95. PubMed ID: 4268160
    [No Abstract]   [Full Text] [Related]  

  • 4. Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization.
    Parton RG; Ockleford CD; Critchley DR
    Brain Res; 1988 Dec; 475(1):118-27. PubMed ID: 3145781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism.
    Hansen GH; Dalskov SM; Rasmussen CR; Immerdal L; Niels-Christiansen LL; Danielsen EM
    Biochemistry; 2005 Jan; 44(3):873-82. PubMed ID: 15654743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internalization of a GFP-tetanus toxin C-terminal fragment fusion protein at mature mouse neuromuscular junctions.
    Roux S; Colasante C; Saint Cloment C; Barbier J; Curie T; Girard E; Molgó J; Brûlet P
    Mol Cell Neurosci; 2005 Dec; 30(4):572-82. PubMed ID: 16456925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologic and functional characterization of caveolae in rat liver hepatocytes.
    Calvo M; Tebar F; Lopez-Iglesias C; Enrich C
    Hepatology; 2001 May; 33(5):1259-69. PubMed ID: 11343255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrins regulate Rac targeting by internalization of membrane domains.
    del Pozo MA; Alderson NB; Kiosses WB; Chiang HH; Anderson RG; Schwartz MA
    Science; 2004 Feb; 303(5659):839-42. PubMed ID: 14764880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor-mediated binding of Pasteurella multocida dermonecrotic toxin to canine osteosarcoma and monkey kidney (vero) cells.
    Pettit RK; Ackermann MR; Rimler RB
    Lab Invest; 1993 Jul; 69(1):94-100. PubMed ID: 8392646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxin interactions with glycoconjugates.
    Wiegandt H
    Adv Cytopharmacol; 1979; 3():17-25. PubMed ID: 382782
    [No Abstract]   [Full Text] [Related]  

  • 11. Binding and internalization of gold-labeled insulin complex by thymic cells.
    Marinova T
    Thymus; 1991 Aug; 18(1):43-9. PubMed ID: 1926288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)).
    Fishman PS; Parks DA; Patwardhan AJ; Matthews CC
    Nat Toxins; 1999; 7(4):151-6. PubMed ID: 10797643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures.
    Parton RG; Ockleford CD; Critchley DR
    J Neurochem; 1987 Oct; 49(4):1057-68. PubMed ID: 3114428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor.
    Pierce EJ; Davison MD; Parton RG; Habig WH; Critchley DR
    Biochem J; 1986 Jun; 236(3):845-52. PubMed ID: 3539106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer.
    Schwab ME; Thoenen H
    J Cell Biol; 1978 Apr; 77(1):1-13. PubMed ID: 659508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular internalization of cytolethal distending toxin: a new end to a known pathway.
    Guerra L; Teter K; Lilley BN; Stenerlöw B; Holmes RK; Ploegh HL; Sandvig K; Thelestam M; Frisan T
    Cell Microbiol; 2005 Jul; 7(7):921-34. PubMed ID: 15953025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internalization in vivo of cholera toxin in the small intestinal epithelium of the rat.
    Hansson HA; Lange S; Lönnroth I
    Acta Pathol Microbiol Immunol Scand A; 1984 Jan; 92(1):15-21. PubMed ID: 6367357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic fibroblast growth factor (FGF-2) internalization through the heparan sulfate proteoglycans-mediated pathway: an ultrastructural approach.
    Gleizes PE; Noaillac-Depeyre J; Amalric F; Gas N
    Eur J Cell Biol; 1995 Jan; 66(1):47-59. PubMed ID: 7750519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunocytochemical study of binding and internalization of carrier-free Cu, Zn Superoxide dismutase by cultured rat hepatocytes.
    Dini L; Rossi L; Lentini A; De Martino A; Rotilio G
    Cell Mol Biol (Noisy-le-grand); 1995 Dec; 41(8):1051-9. PubMed ID: 8747086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrophobicities of cholera toxin, tetanus toxin and their components.
    Ward WH; Britton P; van Heyningen S
    Biochem J; 1981 Nov; 199(2):457-60. PubMed ID: 7340813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.