These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6801743)

  • 1. Respiratory properties of blood in a strictly aquatic and predominantly skin-breathing urodele, Cryptobranchus alleganiensis.
    Boutilier RG; Toews DP
    Respir Physiol; 1981 Nov; 46(2):161-76. PubMed ID: 6801743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory, circulatory and acid-base adjustments to hypercapnia in a strictly aquatic and predominantly skin-breathing urodele, Cryptobranchus alleganiensis.
    Boutilier RG; Toews DP
    Respir Physiol; 1981 Nov; 46(2):177-92. PubMed ID: 6801744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-base balance and temperature in a predominantly skin-breathing salamander, Cryptobranchus alleganiensis.
    Moalli R; Meyers RS; Ultsch GR; Jackson DC
    Respir Physiol; 1981 Jan; 43(1):1-11. PubMed ID: 6787680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin function in a skin-breathing aquatic salamander, Desmognathus quadramaculatus.
    Maginniss LA; Booth DT
    Respir Physiol; 1995 Feb; 99(2):233-40. PubMed ID: 7777706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of enforced activity on ventilation, circulation and blood acid-base balance in the aquatic gill-less urodele, Cryptobranchus alleganiensis; a comparison with the semi-terrestrial anuran, Bufo marinus.
    Boutilier RG; McDonald DG; Toews DP
    J Exp Biol; 1980 Feb; 84():289-302. PubMed ID: 6767804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory properties of the blood of a lungless and gill-less salamander, Desmognathus fuscus.
    Gatz RN; Crawford EC; Piiper J
    Respir Physiol; 1974 Feb; 20(1):33-41. PubMed ID: 4821655
    [No Abstract]   [Full Text] [Related]  

  • 7. Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus.
    Hutchison VH; Haines HB; Engbretson G
    Respir Physiol; 1976 Jul; 27(1):115-29. PubMed ID: 9678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquatic Respiration: An Unusual Strategy in the Hellbender Cryptobranchus alleganiensis alleganiensis (Daudin).
    Guimond RW; Hutchison VH
    Science; 1973 Dec; 182(4118):1263-5. PubMed ID: 17811319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen and carbon dioxide dissociation of duck blood.
    Scheipers G; Kawashiro T; Scheid P
    Respir Physiol; 1975 Jun; 24(1):1-13. PubMed ID: 751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure.
    Turko AJ; Robertson CE; Bianchini K; Freeman M; Wright PA
    J Exp Biol; 2014 Nov; 217(Pt 22):3988-95. PubMed ID: 25267849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular effects of hyperbaric oxygen with and without addition of carbon dioxide.
    Bergo GW; Tyssebotn I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):264-75. PubMed ID: 10483795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood gas transport properties in gill and lung forms of the axolotl (Ambystoma mexicanum).
    Gahlenbeck H; Bartels H
    Respir Physiol; 1970 May; 9(2):175-82. PubMed ID: 5445181
    [No Abstract]   [Full Text] [Related]  

  • 13. Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana.
    Burggren WW; West NH
    Respir Physiol; 1982 Feb; 47(2):151-64. PubMed ID: 6803316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The behavior of arterial and mixed venous oxygen and carbon dioxide partial pressure and the pH value during and following intubation apnoea. Studies on the occurrence of the Christiansen-Douglas-Haldane effect].
    Merkelbach D; Brandt L; Mertzlufft F
    Anaesthesist; 1993 Oct; 42(10):691-701. PubMed ID: 8250203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.
    Jensen FB
    Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen uptake and blood respiratory properties of the caecilian Boulengerula taitanus.
    Wood SC; Weber RE; Maloiy GM; Johansen K
    Respir Physiol; 1975 Sep; 24(3):355-63. PubMed ID: 242053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OBSERVATIONS ON THE TRANSPORT OF CARBON DIOXIDE IN THE BLOOD OF SOME MARINE INVERTEBRATES.
    Parsons TR; Parsons W
    J Gen Physiol; 1923 Nov; 6(2):153-66. PubMed ID: 19872059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide.
    Sun XG; Hansen JE; Ting H; Chuang ML; Stringer WW; Adame D; Wasserman K
    Chest; 2000 Sep; 118(3):631-40. PubMed ID: 10988183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence and Molecular Analysis of Hellbender (Cryptobranchus alleganiensis) Trypanosomes in Tennessee.
    Baker E; Hardman RH; Sutton WB; Reinsch S; Freake M; Holder E; Frost C; Nissen B; Nolan E; Gerhold R; Miller D
    J Wildl Dis; 2023 Jan; 59(1):161-166. PubMed ID: 36602794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.