These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 6802189)
1. [Transport of electrons from mitochondria to microsomes in the reconstituted system of cell organelles]. Chistiakov VV; Pospelova LN Biokhimiia; 1982 Jan; 47(1):55-61. PubMed ID: 6802189 [TBL] [Abstract][Full Text] [Related]
2. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
3. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related]
4. [Interaction of the Cu(Lys)2 complex with the NADPH-dependent microsomal electron transport system and microsomal membrane]. Rumiantseva GV; Vaĭner LM Biokhimiia; 1982 Jun; 47(6):921-30. PubMed ID: 6810958 [TBL] [Abstract][Full Text] [Related]
5. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Yamazaki H; Nakamura M; Komatsu T; Ohyama K; Hatanaka N; Asahi S; Shimada N; Guengerich FP; Shimada T; Nakajima M; Yokoi T Protein Expr Purif; 2002 Apr; 24(3):329-37. PubMed ID: 11922748 [TBL] [Abstract][Full Text] [Related]
6. The markers of pig heart mitochondrial sub-fractions : I. - The dual location of NADPH-cytochrome c reductase in outer membrane and microsomes. Comte J; Gautheron DC Biochimie; 1978; 60(11-12):1289-98. PubMed ID: 223663 [TBL] [Abstract][Full Text] [Related]
7. Activated forms of oxygen in the metabolism of xenobiotics catalyzed by cytochrome P-450. Lyakhovich VV; Tsyrlov IB; Mishin VM; Weiner LM; Rumyantseva G; Eremenko SI; Budker VG Acta Biol Med Ger; 1979; 38(2-3):201-6. PubMed ID: 229676 [TBL] [Abstract][Full Text] [Related]
8. [Microsomal oxidation system in the course of development and aging]. Lemeshko VV Biokhimiia; 1980 Nov; 45(11):1964-9. PubMed ID: 6786371 [TBL] [Abstract][Full Text] [Related]
9. Reduction of 3'-azido-2',3'-dideoxynucleosides to their 3'-amino metabolite is mediated by cytochrome P-450 and NADPH-cytochrome P-450 reductase in rat liver microsomes. Cretton EM; Sommadossi JP Drug Metab Dispos; 1993; 21(5):946-50. PubMed ID: 7902260 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of reduction of purified liver microsomal cytochrome P-450 in the reconstituted enzyme system studied by stopped flow spectrophotometry. Vatsis KP; Oprian DD; Coon MJ Acta Biol Med Ger; 1979; 38(2-3):459-73. PubMed ID: 42251 [TBL] [Abstract][Full Text] [Related]
11. Electron-transport cytochrome P-450 system is involved in the microsomal metabolism of the carcinogen chromate. Garcia JD; Jennette KW J Inorg Biochem; 1981 Jul; 14(4):281-95. PubMed ID: 6792322 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of azoreduction of dimethylaminoazobenzene by rat liver NADPH-cytochrome P-450 reductase and partially purified cytochrome P-450. Oxygen and carbon monoxide sensitivity and stimulation by FAD and FMN. Levine WG; Raza H Drug Metab Dispos; 1988; 16(3):441-8. PubMed ID: 2900738 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of elementary steps in the cytochrome P-450 reaction sequence. VI. Model treatment of the NADPH-dependent first electron transfer reaction between cytochrome P-450 reductase and cytochrome P-450 LM2 in solution. Rohde K; Blanck J; Ruckpaul K Biomed Biochim Acta; 1983; 42(6):651-62. PubMed ID: 6416251 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes. Tampo Y; Yonaha M Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752 [TBL] [Abstract][Full Text] [Related]
15. Differences in the mechanism of functional interaction between NADPH-cytochrome P-450 reductase and its redox partners. Tamburini PP; Schenkman JB Mol Pharmacol; 1986 Aug; 30(2):178-85. PubMed ID: 3016501 [TBL] [Abstract][Full Text] [Related]
16. Hepatic cytochrome P-450. Paine AJ Essays Biochem; 1981; 17():85-126. PubMed ID: 6795037 [No Abstract] [Full Text] [Related]
17. [Effect of 2-hydroxyestradiol-17beta on NADPH-dependent electron transfer in rat liver microsomes in vitro (author's transl)]. Wollenberg P; Scheulen M; Bolt HM; Kappus H; Remmer H Hoppe Seylers Z Physiol Chem; 1976 Mar; 357(3):351-7. PubMed ID: 8367 [TBL] [Abstract][Full Text] [Related]
18. Application of electron-donor properties of glucose oxidase and xanthine oxidase for reduction of microsomal NAD(P)H-dependent electron-transport chains. Izotov MV; Shcherbakov VM; Spiridonova SM; Devichenskiy VM; Benediktova SA Biotechnol Appl Biochem; 1991 Feb; 13(1):90-6. PubMed ID: 2054105 [TBL] [Abstract][Full Text] [Related]
19. [Cytochromes c and P-450 as terminal acceptors in a reconstituted system of mitochondrial hydroxylation]. Armenian AG; Mardanian SS; Nalbandian RM Biokhimiia; 1982 May; 47(5):784-90. PubMed ID: 6284260 [TBL] [Abstract][Full Text] [Related]
20. [Interrelationship between the generation of oxygen anion-radicals and the reduction of artificial acceptors and cytochrome P-450 by NADPH-cytochrome c reductase]. Liakhovich VV; Mishin VM; Pokrovskii AG Biokhimiia; 1977 Jul; 42(7):1323-30. PubMed ID: 198028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]