These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei. Hausman SZ; London J J Bacteriol; 1987 Apr; 169(4):1651-5. PubMed ID: 3104310 [TBL] [Abstract][Full Text] [Related]
6. Acquisitive evolution of ribitol dehydrogenase in Klebsiella pneumoniae. Thompson LW; Krawiec S J Bacteriol; 1983 May; 154(2):1027-31. PubMed ID: 6341353 [TBL] [Abstract][Full Text] [Related]
7. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes. Bourand A; Yebra MJ; Boël G; Mazé A; Deutscher J J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164 [TBL] [Abstract][Full Text] [Related]
8. Pentitol metabolism of Rhodobacter sphaeroides Si4: purification and characterization of a ribitol dehydrogenase. Kahle C; Schneider KH; Giffhorn F J Gen Microbiol; 1992 Jun; 138(6):1277-81. PubMed ID: 1527498 [TBL] [Abstract][Full Text] [Related]
9. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
10. Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli. Scangos GA; Reiner AM J Bacteriol; 1978 May; 134(2):501-5. PubMed ID: 207668 [TBL] [Abstract][Full Text] [Related]
11. Transport of ribitol and D-glucose in the yeast Candida guillermondii. Miersch J Folia Microbiol (Praha); 1977; 22(5):363-72. PubMed ID: 924276 [TBL] [Abstract][Full Text] [Related]
12. Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants. Bettenbrock K; Siebers U; Ehrenreich P; Alpert CA J Bacteriol; 1999 Jan; 181(1):225-30. PubMed ID: 9864334 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of the IIIXtl phospho-carrier protein of the phosphoenolpyruvate-dependent xylitol:phosphotransferase found in Lactobacillus casei C183. London J; Hausman SZ J Bacteriol; 1983 Nov; 156(2):611-9. PubMed ID: 6415035 [TBL] [Abstract][Full Text] [Related]
14. Fermentation of sugars and sugar alcohols by plaque Lactobacillus strains. Almståhl A; Lingström P; Eliasson L; Carlén A Clin Oral Investig; 2013 Jul; 17(6):1465-70. PubMed ID: 22956128 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols. Toivari MH; Ruohonen L; Miasnikov AN; Richard P; Penttilä M Appl Environ Microbiol; 2007 Sep; 73(17):5471-6. PubMed ID: 17630301 [TBL] [Abstract][Full Text] [Related]
16. Evidence for presence of a xylitol phosphotransferase system in Streptococcus mutans OMZ 176. Assev S; Rölla G Acta Pathol Microbiol Immunol Scand B; 1984 Apr; 92(2):89-92. PubMed ID: 6730972 [TBL] [Abstract][Full Text] [Related]
17. Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. De Boeck R; Sarmiento-Rubiano LA; Nadal I; Monedero V; Pérez-Martínez G; Yebra MJ Appl Microbiol Biotechnol; 2010 Feb; 85(6):1915-22. PubMed ID: 19784641 [TBL] [Abstract][Full Text] [Related]
18. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. 3. PHYSICAL AND IMMUNOLOGICAL PROPERTIES OF PENITOL DEHYDROGENASES AND PENTULOKINASES. MORTLOCK RP; FOSSITT DD; PETERING DH; WOOD WA J Bacteriol; 1965 Jan; 89(1):129-35. PubMed ID: 14255652 [TBL] [Abstract][Full Text] [Related]
19. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei. Chassy BM; Thompson J J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427 [TBL] [Abstract][Full Text] [Related]
20. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. Chassy BM; Thompson J J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]