These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 680370)

  • 41. Effects of cordycepin and cell dissociation on the synthesis of H1 histone by sea urchin embryos.
    Brookbank JW
    Cell Differ; 1980 Dec; 9(6):315-21. PubMed ID: 6969119
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the regulation of O2 consumption in sea urchin embryos in the presence of actinomycin D.
    Bartolucci S; De Vincentiis M; Lancieri M
    Acta Embryol Exp (Palermo); 1973; 1():105-13. PubMed ID: 4750186
    [No Abstract]   [Full Text] [Related]  

  • 43. The relative contributions of newly synthesized and stored messages to Hl histone synthesis in interspecies hybrid echinoid embryos.
    Easton DP; Whiteley AH
    Differentiation; 1979; 12(3):127-33. PubMed ID: 467855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relative effect of transcription-level and translation-level control of protein synthesis during early development of the sea urchin.
    Terman SA
    Proc Natl Acad Sci U S A; 1970 Apr; 65(4):985-92. PubMed ID: 5266167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A site of discontinuity in the interaction between DNA and histones in nucleosomes of sea urchin embryo chromatin.
    Spadafora C; Geraci G
    Biochem Biophys Res Commun; 1976 Mar; 69(2):291-5. PubMed ID: 1267787
    [No Abstract]   [Full Text] [Related]  

  • 46. Stabilization of tubulin mRNA by inhibition of protein synthesis in sea urchin embryos.
    Gong ZY; Brandhorst BP
    Mol Cell Biol; 1988 Aug; 8(8):3518-25. PubMed ID: 3211150
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards a total analysis of polyribosome-associated ribonucleoprotein particles of sea urchin embryos.
    Ruzdijić S; Glisin V
    Biochim Biophys Acta; 1972 May; 269(3):441-9. PubMed ID: 5039543
    [No Abstract]   [Full Text] [Related]  

  • 48. Histone gene expression: progeny of isolated early blastomeres in culture make the same change as in the embryo.
    Arceci RJ; Gross PR
    Science; 1980 Aug; 209(4456):607-9. PubMed ID: 7394523
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The effect of histones on ribonucleic acid and protein synthesis in sea urchin embryos at early developmental stages].
    Vorob'ev VI
    Tsitologiia; 1968 Oct; 10(10):1353-7. PubMed ID: 5733954
    [No Abstract]   [Full Text] [Related]  

  • 50. Size of histone gene transcripts in different embryonic stages of the sea urchin, Strongylocentrotus purpuratus.
    Kunkel NS; Hemminki K; Weinberg ES
    Biochemistry; 1978 Jun; 17(13):2591-8. PubMed ID: 678530
    [No Abstract]   [Full Text] [Related]  

  • 51. Chromatin-associated proteins of the developing sea urchin embryo. I. Kinetics of synthesis and characterization of non-histone proteins.
    Seale RL; Aronson AI
    J Mol Biol; 1973 Apr; 75(4):633-45. PubMed ID: 4732069
    [No Abstract]   [Full Text] [Related]  

  • 52. Histone messengers and histone genes.
    Kedes LH
    Cell; 1976 Jul; 8(3):321-31. PubMed ID: 954095
    [No Abstract]   [Full Text] [Related]  

  • 53. Two temporal phases for the control of histone gene activity in cleaving sea urchin embryos (S. purpuratus).
    Goustin AS
    Dev Biol; 1981 Oct; 87(1):163-75. PubMed ID: 7286417
    [No Abstract]   [Full Text] [Related]  

  • 54. Evidence that the s-polysomes of early sea urchin embryos may be responsible for the synthesis of chromosomal histones.
    Nemer M; Lindsay DT
    Biochem Biophys Res Commun; 1969 Apr; 35(1):156-60. PubMed ID: 5779144
    [No Abstract]   [Full Text] [Related]  

  • 55. Translational regulation of histone synthesis in the sea urchin strongylocentrotus purpuratus.
    Herlands L; Allfrey VG; Poccia D
    J Cell Biol; 1982 Jul; 94(1):219-23. PubMed ID: 7119016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonrandom distribution of histone mRNAs into polysomes and nonpolysomal ribonucleoprotein particles in sea urchin embryos.
    Baker EJ; Infante AA
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2455-9. PubMed ID: 6953405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reiteration frequency of the histone genes in the genome of the amphibian, Xenopus laevis.
    Jacob E; Malacinski G; Birnstiel ML
    Eur J Biochem; 1976 Oct; 69(1):45-54. PubMed ID: 991862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-fertilization polyadenylation during transcriptive and translational inhibition.
    Slater DW; Slater I; Gillespie DH; Gillespie S
    Biochem Biophys Res Commun; 1974 Oct; 60(4):1222-8. PubMed ID: 4417429
    [No Abstract]   [Full Text] [Related]  

  • 59. Distribution of messenger ribonucleic acid in polysomes and nonpolysomal particles of sea urchin embryos: translational control of actin synthesis.
    Infante AA; Heilmann LJ
    Biochemistry; 1981 Jan; 20(1):1-8. PubMed ID: 6894096
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Template activity for histones of poly(A)-minus RNA fraction from different developmental stages of Artemia salina embryos.
    Amaldi PP; Felicetti L; Campioni N
    Biochim Biophys Acta; 1978 May; 518(3):518-24. PubMed ID: 656432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.