BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 6803810)

  • 1. Substrate stereospecificity and selectivity of catechol-O-methyltransferase for DOPA, DOPA derivatives and alpha-substituted catecholamines.
    Gordonsmith RH; Raxworthy MJ; Gulliver PA
    Biochem Pharmacol; 1982 Feb; 31(3):433-7. PubMed ID: 6803810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase.
    Lautala P; Ulmanen I; Taskinen J
    Mol Pharmacol; 2001 Feb; 59(2):393-402. PubMed ID: 11160877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catechol-O-methyltransferase: substrate-specificity and stereoselectivity for beta-adrenoceptor agents.
    Raxworthy MJ; Youde IR; Gulliver PA
    Xenobiotica; 1986 Jan; 16(1):47-52. PubMed ID: 2868577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ring-fluorination on the rate of O-methylation of dihydroxyphenylalanine (DOPA) by catechol-O-methyltransferase: significance in the development of 18F-PETT scanning agents.
    Creveling CR; Kirk KL
    Biochem Biophys Res Commun; 1985 Aug; 130(3):1123-31. PubMed ID: 3927916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catechol-O-methyltransferase inhibition in erythrocytes and liver by BIA 3-202 (1-[3,4-dibydroxy-5-nitrophenyl]-2-phenyl-ethanone).
    Soares-da-Silva P; Vieira-Coelho MA; Parada A
    Pharmacol Toxicol; 2003 Jun; 92(6):272-8. PubMed ID: 12787259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salvianolic acid B as a substrate and weak catechol-O-methyltransferase inhibitor in rats.
    Qi Q; Cao L; Li F; Wang H; Liu H; Hao H; Hao K
    Xenobiotica; 2015; 45(9):820-7. PubMed ID: 25869243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjoint radioenzymatic measurement of catecholamines, their catechol metabolites and DOPA in biological samples.
    Thiede HM; Kehr W
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Dec; 318(1):19-28. PubMed ID: 6799844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolism of dopamine, NN-dialkylated dopamines and derivatives of the dopamine agonist 2-amino-dihydroxy-1,2,3,4-tetrahydronaphthalene (ADTN) by catechol-O-methyltransferase.
    Youde IR; Raxworthy MJ; Gulliver PA; Dijkstra D; Horn AS
    J Pharm Pharmacol; 1984 May; 36(5):309-13. PubMed ID: 6145766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methoxytyrosine formation as an indicator of catechol-O-methyltransferase activity in rat liver in vivo.
    Kehr W; Zimmermann R; Thiede M
    Naunyn Schmiedebergs Arch Pharmacol; 1977 Oct; 300(1):19-23. PubMed ID: 593428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of SafC, a catechol 4-O-methyltransferase involved in saframycin biosynthesis.
    Nelson JT; Lee J; Sims JW; Schmidt EW
    Appl Environ Microbiol; 2007 Jun; 73(11):3575-80. PubMed ID: 17449703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the catechol-O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by catecholamine: implications for the mechanism of estrogen-induced carcinogenesis.
    Zhu BT; Liehr JG
    Arch Biochem Biophys; 1993 Jul; 304(1):248-56. PubMed ID: 8323288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIA 3-202, a novel catechol-O-methyltransferase inhibitor, reduces the peripheral O-methylation of L-DOPA and enhances its availability to the brain.
    Parada A; Soares-da-Silva P
    Pharmacology; 2003 May; 68(1):29-37. PubMed ID: 12660477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms.
    Cumming P; Gjedde A
    Synapse; 1998 May; 29(1):37-61. PubMed ID: 9552174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme.
    Lotta T; Vidgren J; Tilgmann C; Ulmanen I; Melén K; Julkunen I; Taskinen J
    Biochemistry; 1995 Apr; 34(13):4202-10. PubMed ID: 7703232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible inhibition of aromatic-L-amino acid decarboxylase by alpha-difluoromethyl-DOPA and metabolism of the inhibitor.
    Ribéreau-Gayon G; Palfreyman MG; Zraïka M; Wagner J; Jung MJ
    Biochem Pharmacol; 1980 Sep; 29(18):2465-9. PubMed ID: 7426053
    [No Abstract]   [Full Text] [Related]  

  • 16. Nitrocatechol Derivatives of Chalcone as Inhibitors of Monoamine Oxidase and Catechol-O-Methyltransferase.
    Engelbrecht I; Petzer JP; Petzer A
    Cent Nerv Syst Agents Med Chem; 2018; 18(2):115-127. PubMed ID: 29697034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic O-methylation of catechols and catecholamines.
    Schüsler-Van Hees MT; Beijersbergen Van Henegouwen GM
    Pharm Weekbl Sci; 1982 Dec; 4(6):176-82. PubMed ID: 7155787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-O-methyltransferase-catalyzed dopamine 3-methylation.
    Meyer MR; Maurer HH
    Chem Res Toxicol; 2009 Jun; 22(6):1205-11. PubMed ID: 19462939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-dopa as substrate for human duodenal catechol-O-methyltransferase and aromatic L-amino acid decarboxylase.
    Schultz E
    Biomed Chromatogr; 1990 Nov; 4(6):242-4. PubMed ID: 2289048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chronic L-DOPA administration of catecholamine metabolism in the rat.
    Lancaster J; Sawyer PR; Shepherd DM; Turnbull MJ
    Br J Pharmacol; 1973 Apr; 47(4):838-42. PubMed ID: 4723802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.