These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6803817)

  • 1. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation: emphysema.
    Baker AB; Restall R; Clark BW
    Br J Anaesth; 1982 May; 54(5):547-54. PubMed ID: 6803817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation: pulmonary oedema.
    Baker AB; Thompson JB; Turner J; Hansen P
    Br J Anaesth; 1982 May; 54(5):539-46. PubMed ID: 7041932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decelerating inspiratory flow waveform improves lung mechanics and gas exchange in patients on intermittent positive-pressure ventilation.
    Al-Saady N; Bennett ED
    Intensive Care Med; 1985; 11(2):68-75. PubMed ID: 3886741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. II: Various physiological variables.
    Baker AB; Colliss JE; Cowie RW
    Br J Anaesth; 1977 Dec; 49(12):1221-34. PubMed ID: 337987
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of inspiratory pressure oscillation on pulmonary gas exchange and circulatory functions in anesthetized, mechanically ventilated dogs.
    Tsuji C; Kondo T; Kurata T; Kuwahira I; Ohta Y
    Tokai J Exp Clin Med; 1982 Sep; 7(5):575-82. PubMed ID: 6820733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inspiratory flow waveforms on lung mechanics, gas exchange, and respiratory metabolism in COPD patients during mechanical ventilation.
    Yang SC; Yang SP
    Chest; 2002 Dec; 122(6):2096-104. PubMed ID: 12475853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspiratory-to-expiratory time ratio and alveolar ventilation during high-frequency ventilation in dogs.
    Yamada Y; Hales CA; Venegas JG
    J Appl Physiol (1985); 1986 Nov; 61(5):1903-7. PubMed ID: 3096949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of assisted ventilation on the work of breathing: volume-controlled versus pressure-controlled ventilation.
    Cinnella G; Conti G; Lofaso F; Lorino H; Harf A; Lemaire F; Brochard L
    Am J Respir Crit Care Med; 1996 Mar; 153(3):1025-33. PubMed ID: 8630541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of mode, inspiratory time, and positive end-expiratory pressure on partial liquid ventilation.
    Fujino Y; Kirmse M; Hess D; Kacmarek RM
    Am J Respir Crit Care Med; 1999 Apr; 159(4 Pt 1):1087-95. PubMed ID: 10194150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration.
    Fletcher R; Jonson B
    Br J Anaesth; 1984 Feb; 56(2):109-19. PubMed ID: 6419753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. III: Blockade of the autonomic nervous system.
    Baker AB; Cowie RW; Colliss JE
    Br J Anaesth; 1977 Dec; 49(12):1235-7. PubMed ID: 337988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of varying inspiratory flow waveform and time in intermittent positive pressure ventilation. I: Introduction and methods.
    Baker AB; Babington PC; Colliss JE; Cowie RW
    Br J Anaesth; 1977 Dec; 49(12):1207-20. PubMed ID: 337986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of tidal volume and positive end-expiratory pressure on inspiratory gas distribution and gas exchange during mechanical ventilation in horses positioned in lateral recumbency.
    Moens Y; Lagerweij E; Gootjes P; Poortman J
    Am J Vet Res; 1998 Mar; 59(3):307-12. PubMed ID: 9522950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airway pressures during positive pressure ventilation with superimposed oscillations before and after lung injury in the cat.
    Jonzon A; Norsted T; Sedin G
    Ups J Med Sci; 1992; 97(2):115-26. PubMed ID: 1471311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of changes of frequency and tidal volume of controlled ventilation: measurements at constant arterial Pco2 in dogs.
    Lunn JN; Mapleson WW; Chilcoat RT
    Br J Anaesth; 1975 Jan; 47(1):2-16. PubMed ID: 1148071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pulmonary function in papain induced emphysema in dogs (author's tranls)].
    Schlick W
    Wien Klin Wochenschr Suppl; 1975; 43():1-15. PubMed ID: 242121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of alterations of inspiratory and expiratory pressures and inspiratory/expiratory ratios on mean airway pressure, blood gases, and intracranial pressure.
    Stewart AR; Finer NN; Peters KL
    Pediatrics; 1981 Apr; 67(4):474-81. PubMed ID: 6789294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of intermittent mandatory ventilation on respiratory drive and timing.
    Weiss JW; Rossing TH; Ingram RH
    Am Rev Respir Dis; 1983 Jun; 127(6):705-8. PubMed ID: 6407372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of different inspiratory flow patterns on arterial C02-tension.
    Markström A; Hedlund A; Lichtwarck-Aschoff M; Nordgren A; Sjöstrand U
    Ups J Med Sci; 2000; 105(1):17-29. PubMed ID: 10893050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volume-controlled ventilation and pressure-controlled inverse ratio ventilation: a comparison of their effects in ARDS patients.
    Mancebo J; Vallverdú I; Bak E; Domínguez G; Subirana M; Benito S; Net A
    Monaldi Arch Chest Dis; 1994 Jun; 49(3):201-7. PubMed ID: 8087114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.