BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6804405)

  • 1. Molecular design of a cyclic heptapeptide to mimic the zinc-binding site of carbonic anhydrase. Synthesis and zinc-binding studies by 13C-and 1H-N.M.R. spectroscopy.
    Iyer KS; Laussac JP; Sarkar B
    Int J Pept Protein Res; 1981 Nov; 18(5):468-77. PubMed ID: 6804405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histidine residues of zinc ligands in beta-lactamase II.
    Baldwin GS; Galdes A; Hill HA; Smith BE; Waley SG; Abraham EP
    Biochem J; 1978 Nov; 175(2):441-7. PubMed ID: 33655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH.
    Eriksson AE; Kylsten PM; Jones TA; Liljas A
    Proteins; 1988; 4(4):283-93. PubMed ID: 3151020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the possible roles of N-terminal His-rich domains of Cu,Zn SODs of some Gram-negative bacteria.
    Arus D; Jancsó A; Szunyogh D; Matyuska F; Nagy NV; Hoffmann E; Körtvélyesi T; Gajda T
    J Inorg Biochem; 2012 Jan; 106(1):10-8. PubMed ID: 22105012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton magnetic resonance studies of carbonic anhydrase. II. Group controlling catalytic activity.
    Pesando JM
    Biochemistry; 1975 Feb; 14(4):681-8. PubMed ID: 234739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration of CO2 by carbonic anhydrase: intramolecular proton transfer between Zn2+-bound H2O and histidine 64 in human carbonic anhydrase II.
    Liang JY; Lipscomb WN
    Biochemistry; 1988 Nov; 27(23):8676-82. PubMed ID: 2851333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis and 13C- and 1H-N.M.R. investigation of a cyclic octapeptide to mimic the zinc-binding site of carboxyipeptidase A.
    Iyer KS; Laussac JP; Lau SJ; Sarkar B
    Int J Pept Protein Res; 1981 May; 17(5):549-59. PubMed ID: 7309361
    [No Abstract]   [Full Text] [Related]  

  • 8. A carbon-13 NMR comparative study of metal ion substitutions in human carbonic anhydrase I carboxymethylated at active-site histidine-200.
    Khalifah RG; Morley PJ
    Arch Biochem Biophys; 1984 Aug; 232(2):632-9. PubMed ID: 6431907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zn(II) coordination domain mutants of T4 gene 32 protein.
    Giedroc DP; Giu HW; Khan R; King GC; Chen K
    Biochemistry; 1992 Jan; 31(3):765-74. PubMed ID: 1731933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II.
    Venters RA; Farmer BT; Fierke CA; Spicer LD
    J Mol Biol; 1996 Dec; 264(5):1101-16. PubMed ID: 9000633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance study of exchangeable protons in human carbonic anhydrases.
    Gupta RK; Pesando JM
    J Biol Chem; 1975 Apr; 250(7):2630-4. PubMed ID: 235521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase.
    Bergquist C; Fillebeen T; Morlok MM; Parkin G
    J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel(II) binding to glycylglycyl-L-tyrosine-N-methyl amide, a peptide mimicking the NH2-terminal nickel(II)-binding site of dog serum albumin: a 1H- and 13C-nuclear magnetic resonance investigation.
    Glennon JD; Hughes DW; Sarkar B
    J Inorg Biochem; 1983 Dec; 19(4):281-9. PubMed ID: 6655471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal binding site of bleomycin A2. A carbon-13 nuclear magnetic resonance study of the zinc(II) and copper(II) derivatives.
    Dabrowiak JC; Greenaway FT; Grulich R
    Biochemistry; 1978 Sep; 17(19):4090-6. PubMed ID: 81685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activity-related ionization in carbonic anhydrase.
    Appleton DW; Sarkar B
    Proc Natl Acad Sci U S A; 1974 May; 71(5):1686-90. PubMed ID: 4209558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dioxygen, an unexpected carbonic anhydrase ligand.
    Ferraroni M; Gaspari R; Scozzafava A; Cavalli A; Supuran CT
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):999-1005. PubMed ID: 29806484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water exchange at the active site of carbonic anhydrase. A synthesis of the OH- and H2O-models.
    Koenig SH; Brown RD; Bertini I; Luchinat C
    Biophys J; 1983 Feb; 41(2):179-87. PubMed ID: 6404321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of binding of the CO2-competitive inhibitor imidazole and related compounds to human carbonic anhydrase I: an isothermal titration calorimetry approach to studying weak binding by displacement with strong inhibitors.
    Khalifah RG; Zhang F; Parr JS; Rowe ES
    Biochemistry; 1993 Mar; 32(12):3058-66. PubMed ID: 8457566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative metal binding and helical folding in model peptides of treble-clef zinc fingers.
    Sénèque O; Bonnet E; Joumas FL; Latour JM
    Chemistry; 2009; 15(19):4798-810. PubMed ID: 19388025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.