These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6804463)

  • 1. Two opposing effects of calmodulin on microtubule assembly depend on the presence of microtubule-associated proteins.
    Lee YC; Wolff J
    J Biol Chem; 1982 Jun; 257(11):6306-10. PubMed ID: 6804463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and tau factor, and inhibition of microtubule assembly.
    Yamamoto H; Fukunaga K; Tanaka E; Miyamoto E
    J Neurochem; 1983 Oct; 41(4):1119-25. PubMed ID: 6619850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the effect of Ca2+ on isolated microtubules from cod and cow brain.
    Strömberg E; Wallin M
    Cell Motil Cytoskeleton; 1994; 28(1):59-68. PubMed ID: 8044850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calmodulin binds to both microtubule-associated protein 2 and tau proteins.
    Lee YC; Wolff J
    J Biol Chem; 1984 Jan; 259(2):1226-30. PubMed ID: 6420403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins.
    Berkowitz SA; Wolff J
    J Biol Chem; 1981 Nov; 256(21):11216-23. PubMed ID: 7287764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of S-100 proteins and calmodulin on Ca2+-induced disassembly of brain microtubule proteins in vitro.
    Baudier J; Briving C; Deinum J; Haglid K; Sörskog L; Wallin M
    FEBS Lett; 1982 Oct; 147(2):165-8. PubMed ID: 7173387
    [No Abstract]   [Full Text] [Related]  

  • 7. The calcium sensitivity of MAP-2 and tau microtubules in the presence of calmodulin.
    Bender PK; Rebhun LI
    Ann N Y Acad Sci; 1986; 466():392-409. PubMed ID: 3089109
    [No Abstract]   [Full Text] [Related]  

  • 8. Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly.
    Yamamoto H; Saitoh Y; Fukunaga K; Nishimura H; Miyamoto E
    J Neurochem; 1988 May; 50(5):1614-23. PubMed ID: 2834518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactions between calcium-dependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins. I. Effect of calcium-dependent regulator protein on the calcium sensitivity of microtubule assembly.
    Nishida E; Kumagai H; Ohtsuki I; Sakai H
    J Biochem; 1979 May; 85(5):1257-66. PubMed ID: 221450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of calmodulin-induced inhibition of microtubule assembly in vitro.
    Kumagai H; Nishida E; Kotani S; Sakai H
    J Biochem; 1986 Feb; 99(2):521-5. PubMed ID: 3084465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ATP on the kinetics of microtubule assembly.
    Zabrecky JR; Cole RD
    J Biol Chem; 1982 Apr; 257(8):4633-8. PubMed ID: 7068656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanosine 5'-O-(3-thiotriphosphate), a potent nucleotide inhibitor of microtubule assembly.
    Hamel E; Lin CM
    J Biol Chem; 1984 Sep; 259(17):11060-9. PubMed ID: 6381495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins.
    Sandoval IV; Weber K
    Eur J Biochem; 1978 Dec; 92(2):463-70. PubMed ID: 33047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of tubulin polymers formed with dideoxyguanosine nucleotides in the presence and absence of microtubule-associated proteins.
    Hamel E; del Campo AA; Lin CM
    J Biol Chem; 1984 Feb; 259(4):2501-8. PubMed ID: 6698977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-and calmodulin-dependent flip-flop mechanism in microtubule assembly-disassembly.
    Kakiuchi S; Sobue K
    FEBS Lett; 1981 Sep; 132(1):141-3. PubMed ID: 6795060
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of melatonin on microtubule assembly depend on hormone concentration: role of melatonin as a calmodulin antagonist.
    Huerto-Delgadillo L; Antón-Tay F; Benítez-King G
    J Pineal Res; 1994 Sep; 17(2):55-62. PubMed ID: 7869228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calmodulin regulation of phospholipid and fatty acid methylation by rat liver microsomes.
    Alemany S; Varela I; Harper JF; Mato JM
    J Biol Chem; 1982 Aug; 257(16):9249-51. PubMed ID: 6809733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation.
    Yamamoto H; Fukunaga K; Goto S; Tanaka E; Miyamoto E
    J Neurochem; 1985 Mar; 44(3):759-68. PubMed ID: 3919151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic and nucleotide requirements for microtubule polymerization in vitro.
    Olmsted JB; Borisy GG
    Biochemistry; 1975 Jul; 14(13):2996-3005. PubMed ID: 238580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and steady-state analysis of microtubules in the presence of colchicine.
    Deery WJ; Weisenberg RC
    Biochemistry; 1981 Apr; 20(8):2316-24. PubMed ID: 7236603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.