These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6804467)

  • 1. Stimulation of fluorescence in a small contact region between rat basophil leukemia cells and planar lipid membrane targets by coherent evanescent radiation.
    Weis RM; Balakrishnan K; Smith BA; McConnell HM
    J Biol Chem; 1982 Jun; 257(11):6440-5. PubMed ID: 6804467
    [No Abstract]   [Full Text] [Related]  

  • 2. Lipid hapten containing membrane targets can trigger specific immunoglobulin E-dependent degranulation of rat basophil leukemia cells.
    Balakrishnan K; Hsu FJ; Cooper AD; McConnell HM
    J Biol Chem; 1982 Jun; 257(11):6427-33. PubMed ID: 6281271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linking of IgE-receptor complexes at the cell surface: a fluorescence method for studying the binding of monovalent and bivalent haptens to IgE.
    Erickson J; Kane P; Goldstein B; Holowka D; Baird B
    Mol Immunol; 1986 Jul; 23(7):769-81. PubMed ID: 2948110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mapping of membrane-bound immunoglobulin E-receptor complexes: use of monoclonal anti-IgE antibodies to probe the conformation of receptor-bound IgE.
    Holowka D; Conrad DH; Baird B
    Biochemistry; 1985 Oct; 24(22):6260-7. PubMed ID: 2935182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile haptens in liposomes stimulate serotonin release by rat basophil leukemia cells in the presence of specific immunoglobulin E.
    Cooper AD; Balakrishnan K; McConnell HM
    J Biol Chem; 1981 Sep; 256(18):9379-81. PubMed ID: 7287691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking of immunoglobulin E-receptor complexes induces their interaction with the cytoskeleton of rat basophilic leukemia cells.
    Robertson D; Holowka D; Baird B
    J Immunol; 1986 Jun; 136(12):4565-72. PubMed ID: 2423596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of cell-cell recognition.
    Weis RM; McConnell HM
    Prog Clin Biol Res; 1982; 102 pt A():331-6. PubMed ID: 7167444
    [No Abstract]   [Full Text] [Related]  

  • 8. Small oligomers of immunoglobulin E (IgE) cause large-scale clustering of IgE receptors on the surface of rat basophilic leukemia cells.
    Menon AK; Holowka D; Baird B
    J Cell Biol; 1984 Feb; 98(2):577-83. PubMed ID: 6229545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a monoclonal rat anti-mouse Ig light chain (RAMOL-1) antibody reduces background binding in immunohistochemical and fluorescent antibody analysis.
    Brodin NT; Jansson B; Hedlund G; Sjögren HO
    J Histochem Cytochem; 1989 Jul; 37(7):1013-24. PubMed ID: 2499618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different antigen expression on Wolffian and Müllerian cells in rat embryos as detected by monoclonal antibodies.
    Dohr G; Tarmann T; Schiechl H
    Anat Embryol (Berl); 1987; 176(2):239-42. PubMed ID: 3113286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the target cell receptor for IgE-I. Solubilization of IgE-receptor complexes from rat mast cells and rat basophilic leukemia cells.
    Conrad DH; Berczi I; Froese A
    Immunochemistry; 1976 Apr; 13(4):329-32. PubMed ID: 939577
    [No Abstract]   [Full Text] [Related]  

  • 12. [Anti-CD3 monoclonal antibodies. Characterization and function].
    Bourel D; Genetet N; Merdrignac G; Genetet B
    Pathol Biol (Paris); 1987 Dec; 35(10):1285-91. PubMed ID: 3125512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bivalent ligand dissociation kinetics from receptor-bound immunoglobulin E: evidence for a time-dependent increase in ligand rebinding at the cell surface.
    Erickson JW; Posner RG; Goldstein B; Holowka D; Baird B
    Biochemistry; 1991 Mar; 30(9):2357-63. PubMed ID: 1825785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A specific assay for serum intestinal alkaline phosphatase utilizing fluorescein labelled monoclonal antibody and antifluorescein antibody coupled to magnetic particles.
    Scott P; Maguire GA
    Ann Clin Biochem; 1991 Mar; 28 ( Pt 2)():192-3. PubMed ID: 1907122
    [No Abstract]   [Full Text] [Related]  

  • 15. Demonstration of Chlamydia psittaci antigen in smears and paraffin tissue sections using a fluorescein isothiocyanate labelled monoclonal antibody.
    Palmer DG; Forshaw D; Wylie SL
    Aust Vet J; 1988 Mar; 65(3):98-9. PubMed ID: 3135791
    [No Abstract]   [Full Text] [Related]  

  • 16. Indirect quenching fluoroimmunoassay.
    Nargessi RD; Landon J
    Methods Enzymol; 1981; 74 Pt C():60-79. PubMed ID: 6798370
    [No Abstract]   [Full Text] [Related]  

  • 17. Immunoassays at a quartz-liquid interface: theory, instrumentation and preliminary application to the fluorescent immunoassay of human immunoglobulin G.
    Sutherland RM; Dähne C; Place JF; Ringrose AR
    J Immunol Methods; 1984 Nov; 74(2):253-65. PubMed ID: 6438238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel in vitro assay for mouse IgE.
    Hall TJ; Rittenberg MB
    J Immunol Methods; 1985 Jun; 80(2):145-54. PubMed ID: 2409174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cromolyn binding protein constitutes the Ca2+ channel of basophils opening upon immunological stimulus.
    Mazurek N; Schindler H; Schürholz T; Pecht I
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6841-5. PubMed ID: 6093125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced fluorescence in indirect immunophenotyping by the use of fluorescent liposomes.
    Gray AG; Morgan J; Linch DC; Huehns ER
    J Immunol Methods; 1989 Jul; 121(1):1-7. PubMed ID: 2502576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.