BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 6804583)

  • 1. Effects of hyperosmolality on calcium mobilization in renal inner medulla: relationship to alterations in prostaglandin E synthesis.
    Craven PA; Studer RK; DeRubertis FR
    J Lab Clin Med; 1982 Jun; 99(6):806-15. PubMed ID: 6804583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent action of osmolality on adenosine 3',5'-monophosphate accumulation in rat renal inner medulla: evidence for a relationship to calcium-responsive arachidonate release and prostaglandin synthesis.
    Craven PA; Briggs R; DeRubertis FR
    J Clin Invest; 1980 Feb; 65(2):529-42. PubMed ID: 6243313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal inner medullary prostaglandin synthesis. A calcium-calmodulin-dependent process suppressed by urea.
    Craven PA; Studer RK; Derubertis FR
    J Clin Invest; 1981 Sep; 68(3):722-32. PubMed ID: 6792221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of osmolality and oxygen availability on soluble cyclic AMP-dependent protein kinase activity of rat renal inner medulla.
    DeRubertis FR; Craven PA
    J Clin Invest; 1978 Dec; 62(6):1210-21. PubMed ID: 219025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of osmolality on phosphoinositide hydrolysis in renal medulla.
    Garg LC; Kapturczak E; McArdle S
    J Pharmacol Exp Ther; 1988 Nov; 247(2):495-501. PubMed ID: 2846822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependent stimulation of renal medullary prostaglandin synthesis by furosemide.
    Craven PA; DeRubertis FR
    J Pharmacol Exp Ther; 1982 Aug; 222(2):306-14. PubMed ID: 6808116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium and O2-dependent control of inner medullary cGMP: possible role for Ca2+-dependent arachiodonate release and prostaglandin synthesis in expression of the action of osmolality on renal inner medullary guanosine 3'5' monophosphate.
    Craven PA; DeRubertis FR
    Metabolism; 1980 Sep; 29(9):842-53. PubMed ID: 6251338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium dependence of the stimulatory action of hypertonicity on renal medullary prostaglandin synthesis.
    Craven PA; DeRubertis FR
    Biochim Biophys Acta; 1984 Aug; 804(4):450-8. PubMed ID: 6235860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid methylation in the calcium-dependent release of arachidonate for prostaglandin synthesis in renal medulla.
    Craven PA; Derubertis FR
    J Lab Clin Med; 1984 Oct; 104(4):480-93. PubMed ID: 6434675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of vasopressin and urea on Ca2+-calmodulin-dependent renal prostaglandin E.
    Craven PA; DeRubertis FR
    Am J Physiol; 1981 Dec; 241(6):F649-58. PubMed ID: 6275716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts.
    Sands JM; Schrader DC
    J Clin Invest; 1991 Jul; 88(1):137-42. PubMed ID: 1905326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role for Ca2+-dependent arachidonate release and prostaglandin synthesis in expression of the action of osmolality on renal inner medullary cGMP.
    Craven PA; DeRubertis FR
    Adv Prostaglandin Thromboxane Res; 1980; 7():1103-5. PubMed ID: 6245564
    [No Abstract]   [Full Text] [Related]  

  • 13. Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2.
    Zenser TV; Davis ES; Rapp NS; Davis BB
    Endocrinology; 1981 Dec; 109(6):1927-32. PubMed ID: 6946924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+.Calmodulin-dependent release of arachidonic acid for renal medullary prostaglandin synthesis. Evidence for involvement of phospholipases A2 and C.
    Craven PA; DeRubertis FR
    J Biol Chem; 1983 Apr; 258(8):4814-23. PubMed ID: 6403536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Culture of rat renal medullary tissue in media made hyperosmotic with NaCl and urea.
    Isabelle ME; Githens S; Moses RL; Bartell CK
    J Exp Zool; 1994 Jul; 269(4):308-18. PubMed ID: 8064258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hypertonicity on cAMP production in cultured renal epithelial cells (LLC-PK1).
    Skorecki KL; Conte JM; Ausiello DA
    Miner Electrolyte Metab; 1987; 13(3):165-72. PubMed ID: 3041190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of benzidine by a prostaglandin-mediated process in renal inner medullary slices.
    Rapp NS; Zenser TV; Brown WW; Davis BB
    J Pharmacol Exp Ther; 1980 Nov; 215(2):401-6. PubMed ID: 7441505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostaglandin E2 synthesis in the inner medullary collecting duct of the rat: implications for vasopressin-dependent cyclic AMP formation.
    Jackson BA
    J Cell Physiol; 1986 Oct; 129(1):60-4. PubMed ID: 3020064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent mechanisms for bradykinin-mediated prostaglandin E2 and cyclic GMP syntheses in rabbit renal inner medulla slices.
    Zenser TV; Rapp NS; Davis BB
    J Pharmacol Exp Ther; 1982 Jun; 221(3):532-5. PubMed ID: 6177849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat renal papillary tissue explants survive and produce epithelial monolayers in culture media made hyperosmotic with sodium chloride and urea.
    Woolverton WS; Githens S; O'Dell-Smith R; Bartell CK
    J Exp Zool; 1990 Nov; 256(2):189-99. PubMed ID: 2280248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.