These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 6804771)

  • 1. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams.
    Beach JL; Milavickas LR
    Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium.
    Fidorra J; Booz J
    Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE.
    Booz J; Fidorra J
    Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdosimetric investigation of a fast neutron radiobiology facility utilising the d(4)-9Be reaction.
    Waker AJ; Maughan RL
    Phys Med Biol; 1986 Nov; 31(11):1281-90. PubMed ID: 3786413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron spectra and neutron kerma derived from activation and fission detector measurements in a d+T neutron therapy beam.
    Mijnheer BJ; Haringa H; Nolthenius HJ; Zijp WL
    Phys Med Biol; 1981 Jul; 26(4):641-55. PubMed ID: 6789344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy.
    Mijnheer BJ
    Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdosimetry of a 42 MeV therapy neutron beam.
    Kliauga P; Horton J; Stafford P
    Int J Radiat Oncol Biol Phys; 1989 Mar; 16(3):845-8. PubMed ID: 2493437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of microdosimetric measurements with relative biological effectiveness from clinical experience for two neutron therapy beams.
    Stinchcomb TG; Kuchnir FT; Myrianthopoulos LC; Horton JL; Roberts WK
    Med Phys; 1986; 13(2):201-6. PubMed ID: 3702817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdosimetric specification of the radiation quality of a d(48.5)+Be fast neutron therapy beam produced by a superconducting cyclotron.
    Kota C; Maughan RL
    Med Phys; 1996 Sep; 23(9):1591-9. PubMed ID: 8892257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microdosimetric characterization of a cyclotron-produced therapeutic neutron beam.
    Stafford PM; Horton JL; Almond PR
    Med Phys; 1987; 14(6):1015-9. PubMed ID: 3696065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator.
    d'Errico F; Nath R; Tana L; Curzio G; Alberts WG
    Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Present status, trends and needs in fast neutron therapy.
    Wambersie A; Menzel HG
    Bull Cancer Radiother; 1996; 83 Suppl():68s-77s. PubMed ID: 8949755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in RBE of 14-MeV (d + T) neutrons for V79 cells irradiated in air and in a phantom: is RBE enhanced near the surface?
    Schalla S; Herskind C; Höver KH; Lorenz WJ; Hahn EW
    Strahlenther Onkol; 1998 Apr; 174(4):204-11. PubMed ID: 9581181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy.
    Bonnett DE; Parnell CJ
    Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy.
    Wambersie A
    Strahlenther Onkol; 1999 Jun; 175 Suppl 2():39-43. PubMed ID: 10394395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.
    Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB
    AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.