These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6805920)

  • 1. Blood:bone disequilibrium. VI. Studies of the solubility characteristics of brushite: apatite mixtures and their stabilization by noncollagenous proteins of bone.
    Neuman WF; Neuman MW; Diamond AG; Menanteau J; Gibbons WS
    Calcif Tissue Int; 1982 Mar; 34(2):149-57. PubMed ID: 6805920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood: bone disequilibrium. V. Effects of a diphosphonate (EHDP) on phosphate fluxes in rat calvaria.
    Neuman WF; Neuman MW
    Calcif Tissue Int; 1982 Mar; 34(2):145-8. PubMed ID: 6282409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and mutual conversion of enamel apatite and brushite at 20 degrees C as a function of pH of the aqueous phase.
    Larsen MJ; Jensen SJ
    Arch Oral Biol; 1989; 34(12):963-8. PubMed ID: 2610631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastable equilibrium solubility behavior of bone mineral.
    Baig AA; Fox JL; Wang Z; Higuchi WI; Miller SC; Barry AM; Otsuka M
    Calcif Tissue Int; 1999 Apr; 64(4):329-39. PubMed ID: 10089227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defluoridation of water at high pH with use of brushite, calcium hydroxide, and bone char.
    Larsen MJ; Pearce EI; Jensen SJ
    J Dent Res; 1993 Nov; 72(11):1519-25. PubMed ID: 8227703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of bone carbonate.
    Biltz RM; Pellegrino ED
    Clin Orthop Relat Res; 1977; (129):279-92. PubMed ID: 608288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubility study of the initial formation of calcium orthophosphates from aqueous solutions at pH 5-10.
    Larsen MJ; Jensen SJ
    Arch Oral Biol; 1986; 31(9):565-72. PubMed ID: 3467681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcium-buffering phase of bone mineral: some clues to its form and formation.
    Neuman MW; Imai K; Kawase T; Saito S
    J Bone Miner Res; 1987 Jun; 2(3):171-81. PubMed ID: 3455165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in 24-hour urine composition between apatite and brushite stone formers.
    Moreira DM; Friedlander JI; Hartman C; Elsamra SE; Smith AD; Okeke Z
    Urology; 2013 Oct; 82(4):768-72. PubMed ID: 23791217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the presence of secondary calcium phosphate in bone and its stabilization by acid production.
    Neuman WF; Bareham BJ
    Calcif Tissue Res; 1975 Sep; 18(3):161-72. PubMed ID: 241470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological calcium phosphates and their role in the physiology of bone and dental tissues I. Composition and solubility of calcium phosphates.
    Driessens FC; van Dijk JW; Borggreven JM
    Calcif Tissue Res; 1978 Dec; 26(2):127-37. PubMed ID: 32960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures.
    Pramanik R; Asplin JR; Jackson ME; Williams JC
    Urol Res; 2008 Oct; 36(5):251-8. PubMed ID: 18779958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiments on the initiation of calcium fluoride formation with reference to the solubility of dental enamel and brushite.
    Larsen MJ; Jensen SJ
    Arch Oral Biol; 1994 Jan; 39(1):23-7. PubMed ID: 8179505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles.
    Anderson HC; Cecil R; Sajdera SW
    Am J Pathol; 1975 May; 79(2):237-54. PubMed ID: 1146961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of alpha-tricalcium phosphate in NaF solutions.
    TenHuisen KS; Brown PW
    Biomaterials; 1999 Mar; 20(5):427-34. PubMed ID: 10204985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effects of surface morphology of calcium phosphate ceramics on apatite formation in dynamic SBF].
    Duan Y; Lü W; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):186-90. PubMed ID: 12224277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydroxyapatite solubility product of human dental enamel as a function of pH in the range 4.6-7.6 at 20 degrees C.
    Larsen MJ; Jensen SJ
    Arch Oral Biol; 1989; 34(12):957-61. PubMed ID: 2558641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the theoretical background for the stability of the calcium-phosphate salts and their mutual conversion in aqueous solutions.
    Larsen MJ
    Arch Oral Biol; 1986; 31(11):757-61. PubMed ID: 3479063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brushite octacalcium phosphate, and carbonate-containing apatite in bone.
    Muenzenberg KJ; Gebhardt M
    Clin Orthop Relat Res; 1973; (90):271-3. PubMed ID: 4689128
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.