These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 6806549)

  • 1. Difference in prostaglandin modulation of arterial and venous smooth muscle responses to bradykinin and norepinephrine.
    Greenberg S; Kadowitz PJ
    Methods Find Exp Clin Pharmacol; 1982; 4(1):7-24. PubMed ID: 6806549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of inhibitors of prostaglandin synthesis on venoconstrictor responses to bradykinin.
    Goldberg MR; Chapnick BM; Joiner PD; Hyman AL; Kadowitz PJ
    J Pharmacol Exp Ther; 1976 Aug; 198(2):357-65. PubMed ID: 948031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the vasodilatory effects of bradykinin in isolated dog renal arteries and in buffer-perfused dog kidneys.
    Malomvölgyi B; Hadházy P; Tekes K; Koltai MZ; Pogátsa G
    Acta Physiol Hung; 1996; 84(1):9-18. PubMed ID: 8993670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential inhibitory effect of neomycin on contractile responses of various canine arteries.
    Adams HR; Goodman FR
    J Pharmacol Exp Ther; 1975 May; 193(2):393-402. PubMed ID: 1142097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery.
    De Mey JG; Claeys M; Vanhoutte PM
    J Pharmacol Exp Ther; 1982 Jul; 222(1):166-73. PubMed ID: 6806467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammation modifies the role of cyclooxygenases in the contractile responses of the rat detrusor smooth muscle to kinin agonists.
    Meini S; Lecci A; Cucchi P; Catalioto RM; Criscuoli M; Maggi CA
    J Pharmacol Exp Ther; 1998 Oct; 287(1):137-43. PubMed ID: 9765332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of morphine, nalbuphine, and butorphanol on adrenergic function in canine saphenous veins.
    Muldoon S; Otto J; Freas W; Watson RL
    Anesth Analg; 1983 Jan; 62(1):21-8. PubMed ID: 6129820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular smooth muscle and prostaglandins.
    Altura BM; Altura BT
    Fed Proc; 1976 Oct; 35(12):2360-6. PubMed ID: 823050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism by which serotonin attenuates contractile response of canine mesenteric arterial smooth muscle.
    Moreland RS; van Breemen C; Bohr DF
    J Pharmacol Exp Ther; 1985 Feb; 232(2):322-9. PubMed ID: 2578562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective pulmonary and venous smooth muscle relaxation by furosemide: a comparison with morphine.
    Greenberg S; McGowan C; Xie J; Summer WR
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1077-85. PubMed ID: 7932155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of prostaglandin A2 and prostaglandin B2 on vascular smooth muscle tone, vascular reactivity and electrolyte transport.
    Wilson WR; Greenberg S; Kadowitz PJ; Diecke FP; Long JP
    J Pharmacol Exp Ther; 1975 Dec; 195(3):567-76. PubMed ID: 1195138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile actions of racemic and d-propranolol on isolated canine mesenteric and coronary arteries.
    Rajfer SI; Kohli JD; Goldberg LI
    J Pharmacol Exp Ther; 1982 Jan; 220(1):127-32. PubMed ID: 6118428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mediation of bradykinin-induced contraction in canine veins via thromboxane/prostaglandin endoperoxide receptor activation.
    Aksoy MO; Harakal C; Smith JB; Stewart GJ; Zerweck CR
    Br J Pharmacol; 1990 Mar; 99(3):461-6. PubMed ID: 2110015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylcholine, potassium and norepinephrine in the isolated canine saphenous vein.
    Rimele TJ; Vanhoutte PM
    J Pharmacol Exp Ther; 1983 Jun; 225(3):720-8. PubMed ID: 6408242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries.
    Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S
    Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasomotor effects of noradrenaline, acetylcholine, histamine, 5-hydroxytryptamine and bradykinin on snake (Trimeresurus flavoviridis) basilar arteries.
    Yoshinaga N; Okuno T; Watanabe Y; Matsumoto T; Shiraishi M; Obi T; Yabuki A; Miyamoto A
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Nov; 146(4):478-83. PubMed ID: 17604230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of prostacyclin and 9a, 11a-epoxymethanoprostaglandin H2 on calcium and magnesium fluxes and tension development in canine intralobar pulmonary arteries and veins.
    Greenberg S
    J Pharmacol Exp Ther; 1981 Nov; 219(2):326-37. PubMed ID: 7026765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of degree of dependence of canine renal arteries and veins on high and low affinity calcium for responses to norepinephrine and potassium.
    Hester RK; Weiss GB
    J Pharmacol Exp Ther; 1981 Feb; 216(2):239-46. PubMed ID: 7463347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of trimetazidine, an antianginal drug, on isolated dog arteries and veins.
    Toda N; Usui H; Osumi S; Kanda M; Kitao K
    Arch Int Pharmacodyn Ther; 1982 Dec; 260(2):230-43. PubMed ID: 6819825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.