These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6806556)

  • 1. The role of squalene synthetase in the inhibition of tetrahymanol biosynthesis by cholesterol in Tetrahymena pyriformis.
    Warburg CF; Wakeel M; Wilton DC
    Lipids; 1982 Mar; 17(3):230-4. PubMed ID: 6806556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the biosynthesis of tetrahymanol in Tetrahymena pyriformis. The mechanism of inhibition by cholesterol.
    Beedle AS; Munday KA; Wilton DC
    Biochem J; 1974 Jul; 142(1):57-64. PubMed ID: 4140721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cholesterol on ubiquinone and tetrahymanol biosynthesis in Tetrahymena pyriformis.
    Wilton DC
    Biochem J; 1983 Oct; 216(1):203-6. PubMed ID: 6418144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyterpenoids as cholesterol and tetrahymanol surrogates in the ciliate Tetrahymena pyriformis.
    Raederstorff D; Rohmer M
    Biochim Biophys Acta; 1988 May; 960(2):190-9. PubMed ID: 3130105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The steric requirements for sterol inhibition of tetrahymanol biosynthesis.
    Conner RL; Landrey JR
    Lipids; 1978 Oct; 13(10):692-6. PubMed ID: 102891
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of excess mevalonic acid on ubiquinone and tetrahymanol biosynthesis in Tetrahymena pyriformis.
    Wilton DC
    Biochem J; 1985 Jul; 229(2):551-3. PubMed ID: 3929773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EFFECT OF TRIPARANOL ON SYNTHESIS OF SQUALENE AND TETRAHYMANOL BY TETRAHYMENA PYRIFORMIS.
    SHORB MS; DUNLAP BE; POLLARD WO
    Proc Soc Exp Biol Med; 1965 Apr; 118():1140-5. PubMed ID: 14277681
    [No Abstract]   [Full Text] [Related]  

  • 8. Non-specific biosynthesis of gammacerane derivatives by a cell-free system from the protozoon Tetrahymena pyriformis. Conformations of squalene, (3S)-squalene epoxide and (3R)-squalene epoxide during the cyclization.
    Bouvier P; Berger Y; Rohmer M; Ourisson G
    Eur J Biochem; 1980 Dec; 112(3):549-56. PubMed ID: 6780347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro.
    Flint OP; Masters BA; Gregg RE; Durham SK
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):91-8. PubMed ID: 9221828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of 1,2-hydride shifts in the formation of euph-7-ene by the squalene-tetrahymanol cyclase of Tetrahymena pyriformis.
    Giner JL; Rocchetti S; Neunlist S; Rohmer M; Arigoni D
    Chem Commun (Camb); 2005 Jun; (24):3089-91. PubMed ID: 15959594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme inhibition during the conversion of squalene to cholesterol.
    Lewis D; Galczenski H; Needle S; Tang SY; Amin D; Gleason M; Bilder G; Perrone M; Merkel L; Rojas C
    Steroids; 1995 Jul; 60(7):475-83. PubMed ID: 7482633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of squalene synthetase by farnesyl pyrophosphate analogues.
    de Montellano PR; Wei JS; Castillo R; Hsu CK; Boparai A
    J Med Chem; 1977 Feb; 20(2):243-9. PubMed ID: 189031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An X-ray diffraction study on phase transition temperatures of various membranes isolated from Tetrahymena pyriformis cells grown at different temperatures.
    Nakayama H; Goto M; Ohki K; Mitsui T; Nozawa Y
    Biochim Biophys Acta; 1983 Apr; 730(1):17-24. PubMed ID: 6403032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the effects of some hypocholesteremic compounds on squalene metabolism in Tetrahymena pyriformis and rat liver.
    Sipe JD; Holmlund CE
    Biochim Biophys Acta; 1972 Sep; 280(1):145-60. PubMed ID: 4116026
    [No Abstract]   [Full Text] [Related]  

  • 15. Isoprenoid (phosphinylmethyl)phosphonates as inhibitors of squalene synthetase.
    Biller SA; Forster C; Gordon EM; Harrity T; Scott WA; Ciosek CP
    J Med Chem; 1988 Oct; 31(10):1869-71. PubMed ID: 3172121
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of cycloheximide on maturation of replicative intermediates into high-molecular-weight DNA in Tetrahymena.
    Westergaard O; Marcker KA; Leer JC
    Eur J Biochem; 1978 May; 86(1):255-60. PubMed ID: 95948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol inhibition of pentacyclic triterpenoid biosynthesis in Tetrahymena pyriformis.
    Conner RL; Landrey JR; Burns CH; Mallory FB
    J Protozool; 1968 Aug; 15(3):600-5. PubMed ID: 5703082
    [No Abstract]   [Full Text] [Related]  

  • 18. Amidinium cation as a mimic of allylic carbocation: synthesis and squalene synthetase inhibitory activity of an amidinium analog of a carbocation intermediate.
    Prashad M
    J Med Chem; 1993 Mar; 36(5):631-2. PubMed ID: 8496942
    [No Abstract]   [Full Text] [Related]  

  • 19. 3-(4-chlorophenyl)-2-(4-diethylaminoethoxyphenyl)-A-pentenonitrile monohydrogen citrate and related analogs. Reversible, competitive, first half-reaction squalene synthetase inhibitors.
    Harwood HJ; Barbacci-Tobin EG; Petras SF; Lindsey S; Pellarin LD
    Biochem Pharmacol; 1997 Mar; 53(6):839-64. PubMed ID: 9113105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver.
    Keller RK; Zhao Z; Chambers C; Ness GC
    Arch Biochem Biophys; 1996 Apr; 328(2):324-30. PubMed ID: 8645011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.