These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6806594)

  • 41. Changes in relative biological effectiveness with depth of the Clatterbridge neutron therapy beam.
    Hornsey S; Myers R; Parnell CJ; Bonnett DE; Blake SW; Bewley DK
    Br J Radiol; 1988 Nov; 61(731):1058-62. PubMed ID: 3145090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell survival measurements in an argon, aluminium and sulphur filtered neutron beam: a comparison with 24 keV neutrons and relevance to boron neutron capture therapy.
    Mill AJ; Morgan GR; Newman SM
    Br J Radiol; 1994 Oct; 67(802):1008-16. PubMed ID: 8000825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The fast neutron beam radiotherapy installation at the TAMVEC cyclotron.
    Smathers JB; Otte V; Almond PR; Smith AR
    Eur J Cancer (1965); 1974 Apr; 10(4):264-5. PubMed ID: 4216475
    [No Abstract]   [Full Text] [Related]  

  • 44. Characteristics of A-150 plastic-equivalent gas in A-150 plastic ionization chambers for p(66)Be(49) neutrons.
    Awschalom M; Rosenberg I; Ten Haken RK; Pearson DW; Attix FH; DeLuca PM
    Med Phys; 1982; 9(6):884-7. PubMed ID: 6298588
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Characterization of ultra high energy neutron beam generated by 500 MeV proton beam].
    Inada T; Hayakawa Y; Arimoto T; Kubota N
    Nihon Igaku Hoshasen Gakkai Zasshi; 1990 Apr; 50(4):404-11. PubMed ID: 2167461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neutron capture therapy using a fast neutron beam: clinical considerations and physical aspects.
    Sauerwein W; Ziegler W; Olthoff K; Streffer C; Rassow J; Sack H
    Strahlenther Onkol; 1989; 165(2-3):208-10. PubMed ID: 2494730
    [No Abstract]   [Full Text] [Related]  

  • 47. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.
    Holeman GR; Price KW; Friedman LF; Nath R
    Med Phys; 1977; 4(6):508-15. PubMed ID: 412048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Skin-sparing effects of neutron beam filtering materials.
    Otte VA; Almond PR; Smathers JB; Attix FH
    Med Phys; 1987; 14(4):670-3. PubMed ID: 3627009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The University of Washington fast neutron beam therapy facility.
    Wootton P; Bichsel H; Eenmaa J; Weaver KA; Williams DL; Wyckoff WG
    Eur J Cancer (1965); 1974 Apr; 10(4):265-6. PubMed ID: 4216477
    [No Abstract]   [Full Text] [Related]  

  • 50. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microdosimetric measurements of radiation quality variations in homogeneous phantoms irradiated by fast neutron beams.
    Beach JL; Milavickas LR
    Med Phys; 1982; 9(1):52-9. PubMed ID: 6804771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superheated drop detector for determination of neutron dose equivalent to patients undergoing high-energy x-ray and electron radiotherapy.
    Nath R; Meigooni AS; King CR; Smolen S; d'Errico F
    Med Phys; 1993; 20(3):781-7. PubMed ID: 8350837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Displacement correction factor for fast-neutron dosimetry in a tissue-equivalent phantom.
    Shapiro P; Attix FH; August LS; Theus RB; Rogers CC
    Med Phys; 1976; 3(2):87-90. PubMed ID: 817124
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of iron/aluminium/sulphur and aluminium/sulphur/argon filtered neutron beams.
    Perks CA; Harrison KG
    Strahlenther Onkol; 1989; 165(2-3):95-8. PubMed ID: 2494755
    [No Abstract]   [Full Text] [Related]  

  • 55. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy.
    Bonnett DE; Parnell CJ
    Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The fixed horizontal neutron therapy beam at Edinburgh: dosimetry and radiation protection.
    Williams JR; Bonnett DE; Parnell CJ
    Br J Radiol; 1979 Mar; 52(615):197-208. PubMed ID: 107990
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An overview: radiation sources, beam quality, dosimetry and spectroscopy in neutron capture therapy.
    Kanda K
    Strahlenther Onkol; 1989; 165(2-3):67-9. PubMed ID: 2494745
    [No Abstract]   [Full Text] [Related]  

  • 58. Fast neutron beam dosimetry: comparison of the ion chamber and proportional counter approaches.
    Bichsel H; Eenmaa J; Schumacher DR; Weaver KA; Williams DL; Wootton P; Wyckoff WG
    Eur J Cancer (1965); 1974 May; 10(5):315-6. PubMed ID: 4216488
    [No Abstract]   [Full Text] [Related]  

  • 59. Collimation of a 14 MeV neutron beam.
    Breynat G; Bory P; Marcie S; Lalanne GN; Costa A
    Eur J Cancer (1965); 1974 May; 10(5):326-8. PubMed ID: 4216498
    [No Abstract]   [Full Text] [Related]  

  • 60. [Experience in creating and prospects of use of the neutron medico-biological beam].
    Zherbin EA; Ivanov VN; Luchnik NV; Efimov IA; Zeĭnalov EI
    Med Radiol (Mosk); 1975 Jul; 20(7):52-9. PubMed ID: 811949
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.