These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 6807290)

  • 1. Active extrusion of Ca2+ from epiphysial chondrocytes of normal and rachitic chickens.
    Zanetti M; Camerotto R; Romeo D; De Bernard B
    Biochem J; 1982 Feb; 202(2):303-7. PubMed ID: 6807290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump.
    Dagher G; Lew VL
    J Physiol; 1988 Dec; 407():569-86. PubMed ID: 3151497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of intracellular magnesium by Mg2+ efflux.
    Güther T; Vormann J; Förster R
    Biochem Biophys Res Commun; 1984 Feb; 119(1):124-31. PubMed ID: 6422934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of chondrocyte mitochondria. A study of the Ca2+ concentration and density banding characteristics of normal and rachitic cartilage.
    Shapiro LM; Burke A; Lee NH
    Biochim Biophys Acta; 1976 Dec; 451(2):583-91. PubMed ID: 999870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular ATP modulates [Ca2+]i in retinoic acid-treated embryonic chondrocytes.
    Hung CT; Allen FD; Mansfield KD; Shapiro IM
    Am J Physiol; 1997 May; 272(5 Pt 1):C1611-7. PubMed ID: 9176153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of ATP, increase of intracellular calcium and the early expression of c-fos in the repair of rat fetal articular cartilage.
    Kumahashi N; Ochi M; Kataoka H; Uchio Y; Kakimaru H; Sugawara K; Enomoto K
    Cell Tissue Res; 2004 Aug; 317(2):117-28. PubMed ID: 15205939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium localization in normal rachitic, and D3-treated chicken epiphyseal chondrocytes utilizing potassium pyroantimonate-osmium tetroxide.
    Carson FL; Davis WL; Matthews JL; Martin JH
    Anat Rec; 1978 Jan; 190(1):23-39. PubMed ID: 204224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of calcium in the regulation of sugar transport in the avian erythrocyte: effects of the calcium ionophore, A23187.
    Bihler I; Charles P; Sawh PC
    Cell Calcium; 1982 Aug; 3(3):243-62. PubMed ID: 6814760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of 1,25-(OH)2D3- and 24,25-(OH)2D3-dependent stimulation of alkaline phosphatase activity by A23187 suggests a role for calcium in the mechanism of vitamin D regulation of chondrocyte cultures.
    Schwartz Z; Langston GG; Swain LD; Boyan BD
    J Bone Miner Res; 1991 Jul; 6(7):709-18. PubMed ID: 1659121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the calcium-extruding mechanism of liver cells.
    Cittadini A; Van Rossum GD
    J Physiol; 1978 Aug; 281():29-43. PubMed ID: 359780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of calcium on the rabbit lens sodium pump.
    Delamere NA; Paterson CA; Borchman D; Manning RE
    Invest Ophthalmol Vis Sci; 1993 Feb; 34(2):405-12. PubMed ID: 8382668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of calcium transport by basolateral membrane vesicles of human small intestine.
    Kikuchi K; Kikuchi T; Ghishan FK
    Am J Physiol; 1988 Oct; 255(4 Pt 1):G482-9. PubMed ID: 3140674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium transport by intact synaptosomes. Influence of ionophore A23187 on plasma-membrane potential, plasma-membrane calcium transport, mitochondrial membrane potential, respiration, cytosolic free-calcium concentration and noradrenaline release.
    Akerman KE; Nicholls DG
    Eur J Biochem; 1981 Mar; 115(1):67-73. PubMed ID: 6785087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobilization of Ca2+ stores in individual pancreatic beta-cells permeabilized or not with digitonin or alpha-toxin.
    Tengholm A; Hellman B; Gylfe E
    Cell Calcium; 2000 Jan; 27(1):43-51. PubMed ID: 10726210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrease in cytosolic free Ca2+ and enhanced proteoglycan synthesis induced by cartilage derived growth factors in cultured chondrocytes.
    Eilam Y; Beit-Or A; Nevo Z
    Biochem Biophys Res Commun; 1985 Oct; 132(2):770-9. PubMed ID: 3933510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: a possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells.
    Matta C; Fodor J; Szíjgyártó Z; Juhász T; Gergely P; Csernoch L; Zákány R
    Cell Calcium; 2008 Sep; 44(3):310-23. PubMed ID: 18291522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium fluxes and contractility in isolated guinea pig atrium: effect of A23187.
    Holland DR; Armstrong WM; Steinberg MI
    Am J Physiol; 1978 Jul; 235(1):C13-9. PubMed ID: 354412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a phenylglyoxal-sensitive passive Ca2+ permeability in human erythrocytes.
    Raess BU; Keenan CE
    J Membr Biol; 1996 May; 151(1):45-51. PubMed ID: 8661493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.