BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 6807352)

  • 21. The effect of temperature on glyceryl ethers in Tetrahymena pyriformis W.
    Lund-Katz S; Conner RL
    J Lipid Res; 1982 Dec; 23(9):1301-7. PubMed ID: 6819334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in the phospholipid, cholesterol, and fatty acyl composition of 3T3 and SV3T3 plasma membranes.
    Perkins RG; Scott RE
    Lipids; 1978 Oct; 13(10):653-7. PubMed ID: 214660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of phospholipid composition of mouse liver microsomes in vivo and the effect on membrane properties.
    Boyle DM; Dean WL
    Biochim Biophys Acta; 1982 Jun; 688(2):667-70. PubMed ID: 7104343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Lipid composition of microsomes and mitochondria of the rat kidney cortex].
    Jung K; Pergande M; Reichmann G; Krause W
    Biomed Biochim Acta; 1985; 44(3):381-8. PubMed ID: 4004838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature adaptation of biological membranes. The effects of acclimation temperature on the unsaturation of the main neutral and charged phospholipids in mitochondrial membranes of the carp (Cyprinus carpio L.).
    Wodtke E
    Biochim Biophys Acta; 1981 Feb; 640(3):698-709. PubMed ID: 7213701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turnover of phospholipid fatty acyl chains in cultured neuroblastoma cells: involvement of deacylation-reacylation and de novo synthesis in plasma membranes.
    Chakravarthy BR; Spence MW; Cook HW
    Biochim Biophys Acta; 1986 Dec; 879(3):264-77. PubMed ID: 3778920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in membrane lipid composition during temperature adaptation by a thermotolerant strain of Tetrahymena pyriformis.
    Fukushima H; Martin CE; Iida H; Kitajima Y; Thompson GA
    Biochim Biophys Acta; 1976 Apr; 431(1):165-79. PubMed ID: 817746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relation between membrane phospholipid composition, fluidity and function in mitochondria of rat brown adipose tissue. Effect of thermal adaptation and essential fatty acid deficiency.
    Senault C; Yazbeck J; Goubern M; Portet R; Vincent M; Gallay J
    Biochim Biophys Acta; 1990 Apr; 1023(2):283-9. PubMed ID: 2328250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phospholipid fatty acyl group composition in mitochondria, microsomes and plasma membranes isolated from rat astrocyte primary cultures: developmental studies.
    el-Achkar P; Van Dorsselaer A; Freysz L; Mandel P; Mersel M
    Dev Neurosci; 1987; 9(4):247-54. PubMed ID: 3428192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1. Possible evidence for temperature-mediated induction of palmitoyl-CoA desaturase.
    Nozawa Y; Kasai R
    Biochim Biophys Acta; 1978 Apr; 529(1):54-66. PubMed ID: 416850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes.
    Dickens BF; Thompson GA
    Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid changes in the phospholipid composition of gill membranes during thermal acclimation of the rainbow trout, Salmo gairdneri.
    Hazel JR; Carpenter R
    J Comp Physiol B; 1985; 155(5):597-602. PubMed ID: 3837031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane changes during growth of Tetrahymena in the presence of ethanol.
    Nandini-Kishore SG; Mattox SM; Martin CE; Thompson GA
    Biochim Biophys Acta; 1979 Mar; 551(2):315-27. PubMed ID: 105757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of environmental temperature on mitochondrial membranes.
    van den Thillart G; de Bruin G
    Biochim Biophys Acta; 1981 Jan; 640(2):439-47. PubMed ID: 7213902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis).
    Stymne S; Stobart AK
    Biochem J; 1986 Dec; 240(2):385-93. PubMed ID: 3028375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature.
    Dickens BF; Thompson GA
    Biochemistry; 1982 Jul; 21(15):3604-11. PubMed ID: 6810926
    [No Abstract]   [Full Text] [Related]  

  • 37. The effects of high concentrations of sodium or calcium ions on the lipid composition and properties of Tetrahymena membranes.
    Mattox SM; Thompson GA
    Biochim Biophys Acta; 1980 Jun; 599(1):24-31. PubMed ID: 6772220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth hormone and liver mitochondria: effects on phospholipid composition and fatty acyl distribution.
    Clejan S; Maddaiah VT
    Lipids; 1986 Nov; 21(11):677-83. PubMed ID: 3796232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positional distribution of fatty acids in the glycerophospholipids of Tetrahymena pyriformis.
    Pieringer J; Conner RL
    J Lipid Res; 1979 Mar; 20(3):363-70. PubMed ID: 109555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of dietary phospholipids enriched with phosphatidylethanolamine on bile and red cell membrane lipids in humans.
    Pakula R; Konikoff FM; Rubin M; Ringel Y; Peled Y; Tietz A; Gilat T
    Lipids; 1996 Mar; 31(3):295-303. PubMed ID: 8900459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.