BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6807984)

  • 61. The carbon monoxide-oxygen partition coefficient of isolated alpha and beta chains from hemoglobin A0.
    Bishop G; Gill S
    Biopolymers; 1986 Aug; 25(8):1381-4. PubMed ID: 3741999
    [No Abstract]   [Full Text] [Related]  

  • 62. Quantitative determination of carbamino adducts of alpha and beta chains in human adult hemoglobin in presence and absence of carbon monoxide and 2,3-diphosphoglycerate.
    Matthew JB; Morrow JS; Wittebort RJ; Gurd FR
    J Biol Chem; 1977 Apr; 252(7):2234-44. PubMed ID: 14958
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Salt, phosphate and the Bohr effect at the hemoglobin beta chain C terminus studied by hydrogen exchange.
    Louie G; Englander JJ; Englander SW
    J Mol Biol; 1988 Jun; 201(4):765-72. PubMed ID: 3172204
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ligand binding kinetic studies on the hybrid hemoglobin alpha(carp):beta(human): a hemoglobin with a restricted allosteric range.
    Goss DJ; Parkhurst LJ
    Biochemistry; 1984 May; 23(10):2174-9. PubMed ID: 6733080
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cobalt hemoglobin: pH dependence of Adair constants and the Bohr effects.
    Snyder FW; Chien CW
    Eur J Biochem; 1978 Nov; 91(1):83-8. PubMed ID: 31286
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mutual effects of protons, NaCl, and oxygen on the dimer-tetramer assembly of human hemoglobin. The dimer Bohr effect.
    Chu AH; Ackers GK
    J Biol Chem; 1981 Feb; 256(3):1199-205. PubMed ID: 7451499
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bohr effect of human hemoglobin: Separation of tertiary and quaternary contributions based on the Wyman equation.
    Okonjo KO
    Biophys Chem; 2017 Sep; 228():87-97. PubMed ID: 28743047
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin.
    Kilmartin JV; Fogg JH; Perutz MF
    Biochemistry; 1980 Jul; 19(14):3189-83. PubMed ID: 7407039
    [No Abstract]   [Full Text] [Related]  

  • 70. On the seemingly diminished CO2-Bohr effect in hypoxic chemodenervated rabbits.
    Kiwull-Schöne H; Gärtner B; Kiwull P
    Adv Exp Med Biol; 1984; 169():163-73. PubMed ID: 6428180
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.
    Nagatomo S; Okumura M; Saito K; Ogura T; Kitagawa T; Nagai M
    Biochemistry; 2017 Mar; 56(9):1261-1273. PubMed ID: 28199095
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Changes in pKa values of individual histidine residues of human hemoglobin upon reaction with carbon monoxide.
    Ohe M; Kajita A
    Biochemistry; 1980 Sep; 19(19):4443-50. PubMed ID: 7407084
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fixed acid and carbon dioxide Bohr effects as functions of hemoglobin-oxygen saturation and erythrocyte pH in the blood of the frog, Rana temporaria.
    Wells RM; Weber RE
    Pflugers Arch; 1985 Jan; 403(1):7-12. PubMed ID: 3920641
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of carbon monoxide on hemoglobin-oxygen binding.
    Hlastala MP; McKenna HP; Franada RL; Detter JC
    J Appl Physiol; 1976 Dec; 41(6):893-9. PubMed ID: 12132
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chloride binding and the Bohr effect of human fetal erythrocytes and HbFII solutions.
    Poyart C; Bursaux E; Guesnon P; Teisseire B
    Pflugers Arch; 1978 Sep; 376(2):169-75. PubMed ID: 30941
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Temperature independence of the alkaline Bohr effect in pig red cells and pig haemoglobin solutions.
    Sinet M; Bohn B; Guesnon P; Poyart C
    Biochim Biophys Acta; 1982 Nov; 708(2):105-11. PubMed ID: 7171612
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cooperativity in the dissociation of nitric oxide from hemoglobin.
    Moore EG; Gibson QH
    J Biol Chem; 1976 May; 251(9):2788-94. PubMed ID: 1262343
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation of pH-induced symmetry distortions of the prosthetic group in oxyhaemoglobin by resonance Raman scattering.
    Schweitzer-Stenner R; Dreybrodt W; Wedekind D; el Naggar S
    Eur Biophys J; 1984; 11(1):61-76. PubMed ID: 6468345
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A proton nuclear magnetic resonance investigation of the anion Bohr effect of human normal adult hemoglobin.
    Russu IM; Wu SS; Ho NT; Kellogg GW; Ho C
    Biochemistry; 1989 Jun; 28(12):5298-306. PubMed ID: 2765535
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Non-linear relationship between oxygen saturation and proton release, and equivalence of the Bohr and Haldane coefficients in human hemoglobin.
    Tyuma I; Ueda Y
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1278-83. PubMed ID: 28125
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.