BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6808963)

  • 1. Anaerobic degradation of uric acid via pyrimidine derivatives by selenium-starved cells of Clostridium purinolyticum.
    Dürre P; Andreesen JR
    Arch Microbiol; 1982 May; 131(3):255-60. PubMed ID: 6808963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum.
    Dürre P; Andreesen JR
    J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine and glycine metabolism by purinolytic clostridia.
    Dürre P; Andreesen JR
    J Bacteriol; 1983 Apr; 154(1):192-9. PubMed ID: 6833177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uric acid protection of nucleobases from ozone-induced degradation.
    Meadows J; Smith RC
    Arch Biochem Biophys; 1986 May; 246(2):838-45. PubMed ID: 3707135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation.
    Wagner R; Andreesen JR
    Arch Microbiol; 1977 Sep; 114(3):219-24. PubMed ID: 911212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized.
    Self WT; Stadtman TC
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7208-13. PubMed ID: 10860985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum.
    Sliwkowski MX; Stadtman TC
    Biofactors; 1988 Dec; 1(4):293-6. PubMed ID: 3255358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of serine from glycine and formaldehyde by cell free extracts of Clostridium acidi-urici.
    Hougland AE; Beck JV
    Microbios; 1979; 24(97-98):151-7. PubMed ID: 119132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Antioxidants Glutathione, Ascorbic Acid and Uric Acid Maintain Butyrate Production by Human Gut Clostridia in The Presence of Oxygen In Vitro.
    Million M; Armstrong N; Khelaifia S; Guilhot E; Richez M; Lagier JC; Dubourg G; Chabriere E; Raoult D
    Sci Rep; 2020 May; 10(1):7705. PubMed ID: 32382092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selenium requirement for the growth of Clostridium sporogenes with glycine as the oxidant in stickland reaction systems.
    Costilow RN
    J Bacteriol; 1977 Jul; 131(1):366-8. PubMed ID: 873891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products.
    Kaur H; Halliwell B
    Chem Biol Interact; 1990; 73(2-3):235-47. PubMed ID: 2155712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of thiamin under anaerobic conditions in Saccharomyces cerevisiae.
    Tanaka K; Tazuya K; Yamada K; Kumaoka H
    Biol Pharm Bull; 2000 Jan; 23(1):108-11. PubMed ID: 10706422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some observations on the caecal microflora of the chick during the first two weeks of life.
    Mead GC; Adams BW
    Br Poult Sci; 1975 Mar; 16(2):169-76. PubMed ID: 806330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography.
    Dürre P; Andreesen JP
    Anal Biochem; 1982 Jun; 123(1):32-40. PubMed ID: 7114475
    [No Abstract]   [Full Text] [Related]  

  • 15. Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium strain.
    Bao P; Huang H; Hu ZY; Häggblom MM; Zhu YG
    J Appl Microbiol; 2013 Mar; 114(3):703-12. PubMed ID: 23181481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of uric acid from perfused rat heart.
    Ronca-Testoni S; Borghini F
    Ital J Biochem; 1982; 31(2):127-38. PubMed ID: 7129855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenoprotein A component of the glycine reductase complex from Clostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA.
    Garcia GE; Stadtman TC
    J Bacteriol; 1991 Mar; 173(6):2093-8. PubMed ID: 1825826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cofactor determination and spectroscopic characterization of the selenium-dependent purine hydroxylase from Clostridium purinolyticum.
    Self WT; Wolfe MD; Stadtman TC
    Biochemistry; 2003 Sep; 42(38):11382-90. PubMed ID: 14503889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption and intermediary metabolism of purines and pyrimidines in lactating dairy cows.
    Stentoft C; Røjen BA; Jensen SK; Kristensen NB; Vestergaard M; Larsen M
    Br J Nutr; 2015 Feb; 113(4):560-73. PubMed ID: 25619278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formate dehydrogenase, a selenium--tungsten enzyme from Clostridium thermoaceticum.
    Ljungdahl LG; Andreesen JR
    Methods Enzymol; 1978; 53():360-72. PubMed ID: 713844
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.