These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6809905)

  • 21. Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. III. Cerebellar input to corticofugal neurons destined for different subcortical nuclei in areas 4 and 6.
    Futami T; Kano M; Sento S; Shinoda Y
    Neurosci Res; 1986 May; 3(4):321-44. PubMed ID: 3725222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large identified pyramidal cells in macaque motor and premotor cortex exhibit "thin spikes": implications for cell type classification.
    Vigneswaran G; Kraskov A; Lemon RN
    J Neurosci; 2011 Oct; 31(40):14235-42. PubMed ID: 21976508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat.
    Yakovenko S; Drew T
    J Neurophysiol; 2009 Aug; 102(2):853-74. PubMed ID: 19458152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential responses of fast- and slow-conducting pyramidal tract neurons to changes in accuracy demands during locomotion.
    Stout EE; Beloozerova IN
    J Physiol; 2013 May; 591(10):2647-66. PubMed ID: 23381901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supplementary motor area and premotor area of monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement.
    Brinkman C; Porter R
    Adv Neurol; 1983; 39():393-420. PubMed ID: 6419554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relation of motor cortex neurons to precisely controlled and ballistic movements.
    Fromm C; Evarts EV
    Neurosci Lett; 1977 Aug; 5(5):259-65. PubMed ID: 19605004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections.
    Lawrence DG; Hopkins DA
    Brain; 1976 Jun; 99(2):235-54. PubMed ID: 825185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey.
    Bauswein E; Fromm C; Preuss A
    Brain Res; 1989 Jul; 493(1):198-203. PubMed ID: 2776007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex.
    Awenowicz PW; Porter LL
    J Neurophysiol; 2002 Dec; 88(6):3439-51. PubMed ID: 12466459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of synapses on fast and slow pyramidal tract neurons in the cat. An electron microscopic study.
    Liu XB; Zheng ZH; Xi MC; Wu CP
    Brain Res; 1991 Apr; 545(1-2):239-47. PubMed ID: 1860048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of stimulation of corpus callosum on precentral neuron activity in the awake monkey.
    Matsunami K; Hamada I
    J Neurophysiol; 1984 Oct; 52(4):676-91. PubMed ID: 6491712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):406-24. PubMed ID: 9658060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of monkey pyramidal tract neuron activity to movement velocity in rapid wrist flexion movement.
    Hamada I
    Brain Res; 1981 Dec; 230(1-2):384-9. PubMed ID: 6797678
    [No Abstract]   [Full Text] [Related]  

  • 34. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons.
    Schieber MH; Thach WT
    J Neurophysiol; 1985 Nov; 54(5):1228-70. PubMed ID: 2934519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corticoreticular pathways in the cat. I. Projection patterns and collaterization.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):389-405. PubMed ID: 9658059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corticocortical synaptic influences on morphologically identified pyramidal neurones in the motor cortex of the monkey.
    Ghosh S; Porter R
    J Physiol; 1988 Jun; 400():617-29. PubMed ID: 3418539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparatory activity of monkey pyramidal tract neurons related to quick movement onset during visual tracking performance.
    Kubota K; Hamada I
    Brain Res; 1979 May; 168(2):435-9. PubMed ID: 109169
    [No Abstract]   [Full Text] [Related]  

  • 38. Both Corticospinal and Reticulospinal Tracts Control Force of Contraction.
    Glover IS; Baker SN
    J Neurosci; 2022 Apr; 42(15):3150-3164. PubMed ID: 35241490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corticospinal gating during action preparation and movement in the primate motor cortex.
    Soteropoulos DS
    J Neurophysiol; 2018 Apr; 119(4):1538-1555. PubMed ID: 29357454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response properties of the non-pyramidal tract neuron in the kitten motor cortex during early postnatal development: an intracellular HRP study.
    Yamamoto T; Samejima A; Oka H
    Brain Res; 1986 Oct; 394(2):275-81. PubMed ID: 3021288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.