These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6809906)

  • 1. Distribution of protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion.
    Nestler EJ; Greengard P
    J Neurosci; 1982 Aug; 2(8):1011-23. PubMed ID: 6809906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve impulses increase the phosphorylation state of protein I in rabbit superior cervical ganglion.
    Nestler EJ; Greengard P
    Nature; 1982 Apr; 296(5856):452-4. PubMed ID: 6278329
    [No Abstract]   [Full Text] [Related]  

  • 3. Dopamine and depolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion.
    Nestler EJ; Greengard P
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7479-83. PubMed ID: 6164062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inhibitors of protein synthesis on dopamine modulation of the slow-EPSP in rabbit superior cervical ganglion.
    Ashe JH; Libet B
    Brain Res; 1984 Jan; 290(1):170-3. PubMed ID: 6318907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic GMP-dependent protein kinase and phosphorylation of the endogenous substrate proteins in the rabbit superior cervical ganglion.
    Takahashi SY; Mochida S; Kobayashi H
    J Neurochem; 1988 Oct; 51(4):1300-7. PubMed ID: 2458436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of potassium depolarization and preganglionic nerve stimulation on the metabolism of [3H]-choline in rat isolated sympathetic ganglia.
    Higgins AJ; Neal MJ
    Br J Pharmacol; 1982 Dec; 77(4):581-90. PubMed ID: 7150867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasopressin stimulates the phosphorylation of an 83,000 Mr protein in the superior cervical ganglion.
    Cahill AL; Perlman RL
    Cell Mol Neurobiol; 1987 Dec; 7(4):413-24. PubMed ID: 3451798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of axotomy on the cyclic GMP increase induced by preganglionic stimulation and high extracellular K+ concentration in superior cervical sympathetic ganglion of the rat.
    Ando M; Nanba T; Okuya M; Nagata Y
    Brain Res; 1983 May; 267(2):313-21. PubMed ID: 6307468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of the inhibitory action of adrenaline on transmitter release in bullfrog sympathetic ganglia: independence of cyclic AMP and calcium ions.
    Kato E; Koketsu K; Kuba K; Kumamoto E
    Br J Pharmacol; 1985 Feb; 84(2):435-43. PubMed ID: 2858238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of proteins in chick ciliary ganglion under conditions that induce long-lasting changes in synaptic transmission: phosphoprotein targets for nitric oxide action.
    Lengyel I; Olesen LE; Nichol KA; Brain KL; Wang X; Robinson PJ; Bennett MR; Rostas JA
    Neuroscience; 1999 May; 90(2):607-19. PubMed ID: 10215163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impulse conduction in sympathetic nerve terminals in the guinea-pig vas deferens and the role of the pelvic ganglia.
    Brock JA; Cunnane TC
    Neuroscience; 1992; 47(1):185-96. PubMed ID: 1579207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynaptic long-term enhancement (LTE) by dopamine may be mediated by Ca2+ and calmodulin.
    Mochida S; Libet B
    Brain Res; 1990 Apr; 513(1):144-8. PubMed ID: 2350677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transsynaptic impulse activity regulates postsynaptic density molecules in developing and adult rat superior cervical ganglion.
    Wu K; Black IB
    Proc Natl Acad Sci U S A; 1988 Aug; 85(16):6207-10. PubMed ID: 3413088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of decentralization and glucose withdrawal on the potassium-induced cAMP increase in the rabbit superior cervical ganglion.
    Kalix P
    Eur J Pharmacol; 1976 Oct; 39(2):313-21. PubMed ID: 185063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphorylation in intact superior cervical ganglion during regeneration.
    Watterson JG; Good R; Hearn MT; Austin L
    J Neurochem; 1990 Aug; 55(2):588-93. PubMed ID: 2142502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia.
    Cole AE; Shinnick-Gallagher P
    J Pharmacol Exp Ther; 1981 May; 217(2):440-4. PubMed ID: 6112259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of molecular components of the synapse in the developing and adult rat superior cervical ganglion.
    Wu K; Black IB
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8687-91. PubMed ID: 3479810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deafferentation-induced increases in a synaptic vesicle protein in the adult rat superior cervical ganglion are associated with new protein synthesis.
    Greif KF
    Neurosci Lett; 1987 Dec; 83(1-2):133-7. PubMed ID: 3441292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal deafferentation prevents normal expression of synaptic vesicle antigens in the developing rat superior cervical ganglion.
    Greif KF; Trenchard H
    Synapse; 1988; 2(1):1-6. PubMed ID: 3138771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuron-specific phosphoproteins in mammalian brain.
    Nestler EJ; Greengard P
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():483-8. PubMed ID: 6328931
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.