These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 681016)

  • 1. Testicular metamorphosis rates in European starlings maintained under short daily photophases.
    Schwab RG; Rutledge JT
    Int J Biometeorol; 1978 Jun; 22(2):116-22. PubMed ID: 681016
    [No Abstract]   [Full Text] [Related]  

  • 2. Testicular metamorphosis and prolongation of spermatogenesis in starlings (Sturnus vulgaris) in the absence of daily photostimulation.
    Rutledge JT; Schwab RC
    J Exp Zool; 1974 Jan; 187(1):71-6. PubMed ID: 4810010
    [No Abstract]   [Full Text] [Related]  

  • 3. A direct comparison of photoperiodic time measurement and the circadian system in European starlings and Japanese quail.
    King VM; Bentley GE; Follett BK
    J Biol Rhythms; 1997 Oct; 12(5):431-42. PubMed ID: 9376642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of continuous light and very short daily photoperiods on the gonadal function of a subtropical finch, spotted munia (Lonchura punctulata).
    Thapliyal JP; Chandola A; Pavnaskar J
    J Endocrinol; 1975 Apr; 65(1):141-2. PubMed ID: 1141806
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in plasma prolactin in male starlings during testicular regression under short days compared with those during photorefractoriness.
    Goldsmith AR; Nicholls TJ
    J Endocrinol; 1984 Sep; 102(3):353-6. PubMed ID: 6481287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperiodic time measurement during the termination of photorefractoriness in the starling (Sturnus vulgaris L.).
    Schleussner G; Gwinner E
    Gen Comp Endocrinol; 1989 Jul; 75(1):54-61. PubMed ID: 2767409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some effects of manipulation of daily photoperiod on the rate of onset of a photorefractory state in canaries (Serinus canarius).
    Storey CR; Nicholls TJ
    Gen Comp Endocrinol; 1976 Oct; 30(2):204-8. PubMed ID: 992342
    [No Abstract]   [Full Text] [Related]  

  • 8. Evidence for a circadian oscillation in the gonadal response of the tropical weaver bird (Ploceus philippinus) to programmed photoperiod.
    Chandola A; Singh R; Thapliyal JP
    Chronobiologia; 1976; 3(3):219-27. PubMed ID: 1017360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of artificially simulated annual photocycles on testicular cycle of the spotted munia Lonchura punctulata.
    Bhatt D; Lakhera P; Chandola-Saklani A
    Indian J Exp Biol; 1986 Dec; 24(12):747-9. PubMed ID: 3583331
    [No Abstract]   [Full Text] [Related]  

  • 10. Decreased light intensity alters the perception of day length by male European starlings (Sturnus vulgaris).
    Bentley GE; Goldsmith AR; Dawson A; Briggs C; Pemberton M
    J Biol Rhythms; 1998 Apr; 13(2):148-58. PubMed ID: 9554576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable daily light regimens as inductive factors of endogenous testicular cycles in the European starling, Sturnus vulgaris.
    Schwab RG; Rutledge JT
    Int J Biometeorol; 1975 Dec; 19(4):219-31. PubMed ID: 1241859
    [No Abstract]   [Full Text] [Related]  

  • 12. Thyroidectomy results in termination of photorefractoriness in starlings (Sturnus vulgaris) kept in long daylengths.
    Dawson A; Goldsmith AR; Nicholls TJ
    J Reprod Fertil; 1985 Jul; 74(2):527-33. PubMed ID: 3930712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of testis temperature rhythms and effects of constant light on testicular function in the domestic fowl (Gallus domesticus).
    Beaupré CE; Tressler CJ; Beaupré SJ; Morgan JL; Bottje WG; Kirby JD
    Biol Reprod; 1997 Jun; 56(6):1570-5. PubMed ID: 9166712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The termination of the avian photorefractory period and the subsequent gonadal response.
    Turek FW
    Gen Comp Endocrinol; 1975 Aug; 26(4):562-4. PubMed ID: 1181248
    [No Abstract]   [Full Text] [Related]  

  • 15. Circannual variations in plasma luteinizing hormone levels in castrated male European starlings (Sturnus vulgaris).
    Dittami J; Gwinner E
    J Biol Rhythms; 1987; 2(3):221-6. PubMed ID: 2979662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incidence of a circadian cycle of photosensitivity in the regulation of the annual testis cycle in the mink: a short-day mammal.
    Boissin-Agasse L; Boissin J
    Gen Comp Endocrinol; 1985 Oct; 60(1):109-15. PubMed ID: 4054583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of molt in birds: association with prolactin and gonadal regression in starlings.
    Dawson A
    Gen Comp Endocrinol; 2006 Jul; 147(3):314-22. PubMed ID: 16530194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both Low Temperature and Shorter Duration of Food Availability Delay Testicular Regression and Affect the Daily Cycle in Body Temperature in a Songbird.
    Dawson A
    Physiol Biochem Zool; 2018; 91(4):917-924. PubMed ID: 29745775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic neurosecretion and phosphatase activity in relation to the photoperiodic control of the testicular cycle of Zonotrichia leucophyrys gambelii.
    FARNER DS
    Gen Comp Endocrinol; 1962; Suppl 1():160-7. PubMed ID: 13891663
    [No Abstract]   [Full Text] [Related]  

  • 20. Thyroidectomy progressively renders the reproductive system of starlings (Sturnus vulgaris) unresponsive to changes in daylength.
    Dawson A
    J Endocrinol; 1993 Oct; 139(1):51-5. PubMed ID: 8254293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.