These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6810759)

  • 1. Stoichiometric cooperation of NADPH and hexobarbital in hepatic microsomes during the catalysis of hydrogen peroxide formation.
    Hildebrandt AG; Heinemeyer G; Roots I
    Arch Biochem Biophys; 1982 Jul; 216(2):455-65. PubMed ID: 6810759
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the mechanism of stimulation of microsomal H2O2 formation and benzo(a)pyrene hydroxylation by substrates and flavone.
    Hildebrandt AG; Bergs C; Heinemeyer G; Schlede E; Roots I; Abbas-Ali B; Schmoldt A
    Adv Exp Med Biol; 1981; 136 Pt A():179-98. PubMed ID: 6283811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete stoichiometry of free NADPH oxidation in liver microsomes.
    Zhukov AA; Archakov AI
    Biochem Biophys Res Commun; 1982 Dec; 109(3):813-8. PubMed ID: 6297491
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of age, hexobarbital, and aniline on NADPH/NADH dependent hydrogen peroxide production in rat hepatic microsomes.
    Klinger W; Freytag A; Schmitt W
    Arch Toxicol Suppl; 1986; 9():382-5. PubMed ID: 3468920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polyamine on microsomal cytochrome P-450 stimulation of rate and improved coupling of NADPH oxidation to hydroxylation.
    Andersson KK; Dalet C; Bonfils C; Maurel P
    Biochem Biophys Res Commun; 1981 Jan; 98(1):311-6. PubMed ID: 6783042
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction between microsomal electron transfer pathways.
    Schenkman JB; Jansson I
    Adv Exp Med Biol; 1975; 58(00):387-404. PubMed ID: 239542
    [No Abstract]   [Full Text] [Related]  

  • 7. Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat and rabbit.
    Heinemeyer G; Nigam S; Hildebrandt AG
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov; 314(2):201-10. PubMed ID: 7453835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cytochrome b5, NADPH-P450 reductase, and lipid on the rate of 6 beta-hydroxylation of testosterone as catalyzed by a human P450 3A4 fusion protein.
    Shet MS; Faulkner KM; Holmans PL; Fisher CW; Estabrook RW
    Arch Biochem Biophys; 1995 Apr; 318(2):314-21. PubMed ID: 7733659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of 1-nitroso-2-naphthol by NADPH in the presence of liver microsomes.
    Leskovac V; Peggins JO; Trivić S; Svircević J; Popović M; Stupar M
    Int J Biochem; 1993 Feb; 25(2):279-86. PubMed ID: 8383068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic properties of purified forms of rabbit liver microsomal cytochrome P-450 in reconstituted phospholipid vesicles.
    Ingelman-Sundberg M; Johansson I
    Biochemistry; 1980 Aug; 19(17):4004-11. PubMed ID: 6773560
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of cytosolic superoxide dismutase as a stimulator in anthranilamide hydroxylation by a microsomal monooxygenase system in rat liver.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    J Biochem; 1984 Nov; 96(5):1323-36. PubMed ID: 6441802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of NADPH-induced lipid peroxidation in rat liver microsomal fractions as a function of age.
    Devasagayam TP; Pushpendran CK
    Biochem Int; 1985 Dec; 11(6):833-9. PubMed ID: 3937529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Fe(III)ADP complex by liver microsomes.
    Végh M; Marton A; Horváth I
    Biochim Biophys Acta; 1988 Feb; 964(2):146-50. PubMed ID: 3124887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denitrosation of carcinostatic nitrosoureas by purified NADPH cytochrome P-450 reductase and rat liver microsomes to yield nitric oxide under anaerobic conditions.
    Potter DW; Reed DJ
    Arch Biochem Biophys; 1982 Jun; 216(1):158-69. PubMed ID: 6808923
    [No Abstract]   [Full Text] [Related]  

  • 16. Proceedings: The influence of steroids on microsomal NADH oxidation in rat liver and human placenta.
    Bergheim P
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R8. PubMed ID: 4152357
    [No Abstract]   [Full Text] [Related]  

  • 17. Cytochrome P450 oxidase activity and its role in NADPH dependent lipid peroxidation.
    Bast A; Brenninkmeijer JW; Savenije-Chapel EM; Noordhoek J
    FEBS Lett; 1983 Jan; 151(2):185-8. PubMed ID: 6832351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of protein-bound iodine formation by lipid extracts from hog thyroid microsomes.
    Nakagawa H; Endo Y; Ohtaki S
    Endocrinol Jpn; 1981 Aug; 28(4):409-17. PubMed ID: 6820773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde.
    Clejan LA; Cederbaum AI
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):781-6. PubMed ID: 8240292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.