These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Metabolism of phosphatidylinositol in plasma membranes and synaptosomes of rat cerebral cortex: a comparison between endogenous vs exogenous substrate pools. Navidi M; MacQuarrie RA; Sun GY Lipids; 1990 May; 25(5):273-7. PubMed ID: 2112671 [TBL] [Abstract][Full Text] [Related]
6. Compartmental study of rat renal phospholipid metabolism. Sterin-Speziale N; Kahane VL; Setton CP; Fernandez MC; Speziale EH Lipids; 1992 Jan; 27(1):10-4. PubMed ID: 1608296 [TBL] [Abstract][Full Text] [Related]
7. Phospholipid metabolism in the rat renal inner medulla. Limas C; Limas CJ Biochim Biophys Acta; 1983 Oct; 753(3):314-23. PubMed ID: 6615866 [TBL] [Abstract][Full Text] [Related]
8. Bradykinin-stimulated differential incorporation of arachidonic acid into lipids of kidney cortex and medulla. Raz A; Schwartzman M Biochem Pharmacol; 1983 Oct; 32(19):2843-6. PubMed ID: 6414482 [TBL] [Abstract][Full Text] [Related]
9. Bradykinin-increased phospholipid deacylation-reacylation in rat renal medulla is inhibited by dBc AMP. Sterin-Speziale N; Kahane VL; Setton CP; Speziale EH Lipids; 1989 Feb; 24(2):146-50. PubMed ID: 2547131 [TBL] [Abstract][Full Text] [Related]
10. Secretogogue-stimulated phosphatidylinositol breakdown in the exocrine pancreas liberates arachidonic acid, stearic acid, and glycerol by sequential actions of phospholipase C and diglyceride lipase. Dixon JF; Hokin LE J Biol Chem; 1984 Dec; 259(23):14418-25. PubMed ID: 6438097 [TBL] [Abstract][Full Text] [Related]
11. Phospholipid turnover in isolated rat pancreatic acini. Consideration of the relative roles of phospholipase A2 and phospholipase C. Halenda SP; Rubin RP Biochem J; 1982 Dec; 208(3):713-21. PubMed ID: 6819865 [TBL] [Abstract][Full Text] [Related]
12. Phospholipase A2 and phospholipase C activities of platelets. Differential substrate specificity, Ca2+ requirement, pH dependence, and cellular localization. Billah MM; Lapetina EG; Cuatrecasas P J Biol Chem; 1980 Nov; 255(21):10227-31. PubMed ID: 7430120 [TBL] [Abstract][Full Text] [Related]
13. Effect of elastase on phospholipase activity in aortic smooth muscle cells. Kawaguchi H; Yasuda H Biochim Biophys Acta; 1988 Feb; 958(3):450-9. PubMed ID: 3124884 [TBL] [Abstract][Full Text] [Related]
14. Phospholipid methylation in the calcium-dependent release of arachidonate for prostaglandin synthesis in renal medulla. Craven PA; Derubertis FR J Lab Clin Med; 1984 Oct; 104(4):480-93. PubMed ID: 6434675 [TBL] [Abstract][Full Text] [Related]
15. Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. Tannenbaum J; Purkerson ML; Klahr S Am J Physiol; 1983 Aug; 245(2):F254-62. PubMed ID: 6410928 [TBL] [Abstract][Full Text] [Related]
16. Fatty acid incorporation into phospholipids of isolated pancreatic islets of the rat. Relationship to insulin release. Laychock SG Diabetes; 1983 Jan; 32(1):6-13. PubMed ID: 6336703 [TBL] [Abstract][Full Text] [Related]
17. Evidence for predominance of phospholipase A2 in release of arachidonic acid in thrombin-activated platelets: phosphatidylinositol-specific phospholipase C may play a minor role in arachidonate liberation. Imai A; Yano K; Kameyama Y; Nozawa Y Jpn J Exp Med; 1982 Apr; 52(2):99-105. PubMed ID: 6811781 [TBL] [Abstract][Full Text] [Related]