These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6811138)

  • 1. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium.
    Luby-Phelps K; Porter KR
    Cell; 1982 Jun; 29(2):441-50. PubMed ID: 6811138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores.
    Kotz KJ; McNiven MA
    J Cell Biol; 1994 Feb; 124(4):463-74. PubMed ID: 8106546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements.
    Luby KJ; Porter KR
    Cell; 1980 Aug; 21(1):13-23. PubMed ID: 7407908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy.
    Byers HR; Porter KR
    J Cell Biol; 1977 Nov; 75(2 Pt 1):541-58. PubMed ID: 264122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium movements during pigment aggregation in freshwater shrimp chromatophores.
    Ribeiro M; McNamara JC
    Pigment Cell Res; 2007 Feb; 20(1):70-7. PubMed ID: 17250550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that MAP-2 may be involved in pigment granule transport in squirrel fish erythrophores.
    Stearns ME; Binder LI
    Cell Motil Cytoskeleton; 1987; 7(3):221-34. PubMed ID: 3297355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The calcium dependence of pigment translocation in freshwater shrimp red ovarian chromatophores.
    McNamara JC; Ribeiro MR
    Biol Bull; 2000 Jun; 198(3):357-66. PubMed ID: 10897449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of microtubules in cell shape and pigment distribution in spreading erythrophores.
    Ochs RL
    Eur J Cell Biol; 1982 Oct; 28(2):226-32. PubMed ID: 7173222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrest of pigment granule motion in erythrophores by quick-freezing.
    Ip W; Murphy DB; Heuser JE
    J Ultrastruct Res; 1984 Feb; 86(2):162-75. PubMed ID: 6737564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative in vitro assay for crustacean chromatophorotropins and other pigment cell agonists.
    Britto AL; Castrucci AM; Visconti MA; Josefsson L
    Pigment Cell Res; 1990; 3(1):28-32. PubMed ID: 2115999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytoplast: a unit structure in chromatophores.
    Porter KR; McNiven MA
    Cell; 1982 May; 29(1):23-32. PubMed ID: 7105183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium regulation of pigment transport in vitro.
    McNiven MA; Ward JB
    J Cell Biol; 1988 Jan; 106(1):111-25. PubMed ID: 2828377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitotic and pigment-translocating activities of cultured chromatophores of the guppy, Lebistes reticulatus.
    Powers EA; Rao KR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):21-9. PubMed ID: 6146472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pigment migration in fish erythrophores is controlled by alpha 2-adrenoceptors.
    Karlsson JO; Andersson RG; Elwing H; Grundström N
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 91(2):513-6. PubMed ID: 2905964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytomatrix regulates "resolute" transport in erythrophores.
    Stearns ME; Binder LI; Wang M
    Ann N Y Acad Sci; 1986; 466():895-908. PubMed ID: 3460462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a non-microtubular colchicine effect in pigment granule aggregation in melanophores of the fiddler crab, Uca pugilator.
    Lambert DT; Fingerman M
    Comp Biochem Physiol C Comp Pharmacol; 1976; 53(1):25-8. PubMed ID: 3378
    [No Abstract]   [Full Text] [Related]  

  • 18. Pigment movements in fish melanophores: morphological and physiological studies. V. Evidence for a microtubule-independent contractile system.
    Schliwa M; Bereiter-Hahn J
    Cell Tissue Res; 1975; 158(1):61-73. PubMed ID: 1149080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for intermediate filaments in squirrelfish erythrophores of Holocentrus ascensionus (Rufus).
    Stearns ME; Wang M
    Exp Cell Res; 1987 Dec; 173(2):395-412. PubMed ID: 3319656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.