These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6811138)

  • 21. The role of microtubules in the movement of pigment granules in teleost melanophores.
    Murphy DB; Tilney LG
    J Cell Biol; 1974 Jun; 61(3):757-79. PubMed ID: 4836391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytoskeleton and PCH-induced pigment aggregation in Macrobrachium potiuna erythrophores.
    Tuma MC; Josefsson L; Castrucci AM
    Pigment Cell Res; 1995 Aug; 8(4):215-20. PubMed ID: 8610073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualization of microtubules of cells in situ by indirect immunofluorescence.
    Byers HR; Fujiwara K; Porter KR
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6657-61. PubMed ID: 6935678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A scanning electron microscopic and flame spectrometry study on the role of Ca2+ in amphibian neurulation using papaverine inhibition and ionophore induction of morphogenetic movement.
    Moran DJ
    J Exp Zool; 1976 Dec; 198(3):409-16. PubMed ID: 826603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of kinesin and myosin with pigment granules in crustacean chromatophores.
    Boyle RT; McNamara JC
    Pigment Cell Res; 2006 Feb; 19(1):68-75. PubMed ID: 16420248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A spring-matrix model for pigment translocation in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi (Crustacea, Decapoda).
    Boyle RT; McNamara JC
    Biol Bull; 2008 Apr; 214(2):111-21. PubMed ID: 18400993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.
    Gouveia GR; Lopes TM; Neves CA; Nery LE; Trindade GS
    Pigment Cell Res; 2004 Oct; 17(5):545-8. PubMed ID: 15357842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An increase in extracellular Ca(2+) concentration induces pigment aggregation in teleostean melanophores.
    Yamada T; Fujii R
    Zoolog Sci; 2002 Aug; 19(8):829-39. PubMed ID: 12193799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual pathways of calcium entry in spike and plateau phases of luteinizing hormone release from chicken pituitary cells: sequential activation of receptor-operated and voltage-sensitive calcium channels by gonadotropin-releasing hormone.
    Davidson JS; Wakefield IK; King JA; Mulligan GP; Millar RP
    Mol Endocrinol; 1988 Apr; 2(4):382-90. PubMed ID: 2454400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium and the endothelin-1 and alpha 1-adrenergic stimulated phosphatidylinositol cycle in cultured rat cardiomyocytes.
    van Heugten HA; de Jonge HW; Bezstarosti K; Lamers JM
    J Mol Cell Cardiol; 1994 Aug; 26(8):1081-93. PubMed ID: 7528283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery.
    Itoh T; Kanmura Y; Kuriyama H
    J Physiol; 1985 Feb; 359():467-84. PubMed ID: 3923186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signal transduction, plasma membrane calcium movements, and pigment translocation in freshwater shrimp chromatophores.
    Milograna SR; Bell FT; McNamara JC
    J Exp Zool A Ecol Genet Physiol; 2010 Nov; 313(9):605-17. PubMed ID: 20683865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea).
    Robison WG; Charlton JS
    J Exp Zool; 1973 Dec; 186(3):279-304. PubMed ID: 4765352
    [No Abstract]   [Full Text] [Related]  

  • 36. Polarized pigment granule transport occurs in the absence of microtubules in squirrelfish erythrophores: studies of the effects of estramustine.
    Stearns ME; Wang M
    J Cell Sci; 1987 May; 87 ( Pt 4)():565-80. PubMed ID: 3654792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of organelle transport in melanophores: regulation of Ca2+ and cAMP levels.
    Thaler CD; Haimo LT
    Cell Motil Cytoskeleton; 1992; 22(3):175-84. PubMed ID: 1330333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of microtubules in pigment translocation in goldfish xanthophores.
    Chen JS; Wang SM
    Arch Histol Cytol; 1993 Dec; 56(5):451-8. PubMed ID: 8129980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling events during cyclic guanosine monophosphate-regulated pigment aggregation in freshwater shrimp chromatophores.
    Milograna SR; Bell FT; McNamara JC
    Biol Bull; 2012 Oct; 223(2):178-91. PubMed ID: 23111130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maturation and secretion of rat hepatic lipase is inhibited by alpha1B-adrenergic stimulation through changes in Ca2+ homoeostasis: thapsigargin and EGTA both mimic the effect of adrenaline.
    Neve BP; Verhoeven AJ; Kalkman I; Jansen H
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):701-6. PubMed ID: 9480878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.