BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 6811383)

  • 1. Operation of the Ca-dependent K(Rb)-transport in human lymphocytes.
    Szász I; Sarkadi B; Gárdos G
    Haematologia (Budap); 1982; 15(1):83-9. PubMed ID: 6811383
    [No Abstract]   [Full Text] [Related]  

  • 2. Ca2+-dependent K+ transport in lymphocytes.
    Sánchez A; Valdeolmillos M; García-Sancho J; Herreros B
    Rev Esp Fisiol; 1986 Dec; 42(4):459-64. PubMed ID: 3105011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of 1-isoproterenol on monovalent cation transport in activated human lymphocytes].
    Krasnikova TL; Marakhova II; Vinogradova TA
    Tsitologiia; 1993; 35(6-7):42-50. PubMed ID: 8266562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The transport and distribution of monovalent cations during the blast transformation of human peripheral blood lymphocytes activated by phytohemagglutinin].
    Vereninov AA; Gusev EV; Kazakova OM; Klimenko EM; Marakhova II; Osipov VV; Toropova FV
    Tsitologiia; 1991; 33(11):78-93. PubMed ID: 1726377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The Na,K-ATPase pump and blast transformation of human peripheral blood lymphocytes].
    Marakhova II; Vinogradova TA; Toropova FV
    Tsitologiia; 1995; 37(12):1167-79. PubMed ID: 8714352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The apparent discrepancy of ouabain inhibition of cation transport and of lymphocyte proliferation is explained by time-dependency of ouabain binding.
    Segel GB; Lichtman MA
    J Cell Physiol; 1980 Jul; 104(1):21-6. PubMed ID: 7440642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channels of the lamprey erythrocyte membrane exhibit a high selectivity to K+ over Rb+: a comparative study of 86Rb and 41K transport.
    Gusev GP; Fleishman DG; Nikiforov VA; Sherstobitov AO
    Gen Physiol Biophys; 1997 Sep; 16(3):273-84. PubMed ID: 9452948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux of 86Rb in activated human lymphocytes.
    Hamilton LJ; Kaplan JG
    Can J Biochem; 1977 Jul; 55(7):774-8. PubMed ID: 890573
    [No Abstract]   [Full Text] [Related]  

  • 9. Human lymphocyte potassium content during the initiation of phytohemagglutinin-induced mitogenesis.
    Segel GB; Lichtman MA; Hollander MM; Gordon BR; Klemperer MR
    J Cell Physiol; 1976 May; 88(1):43-8. PubMed ID: 1262405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms responsible for inhibition of lymphocyte activation by agents which block membrane calcium or potassium channels.
    Weir MR; Gomolka D; Peppler R; Handwerger BS
    Transplant Proc; 1993 Feb; 25(1 Pt 1):605-9. PubMed ID: 8382383
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of high external concentrations of K+ on 86Rb+ efflux in human platelets: evidence for Na+/K+/2Cl- co-transport.
    de Silva HA; Carver JG; Aronson JK
    Clin Sci (Lond); 1996 Dec; 91(6):725-31. PubMed ID: 8976808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in sodium pump transport activity and Na+, K+-ATPase expression level following lymphocytes activation in humans].
    Marakhova II; Karitskaia II; Vinogradova TA; Aksenov ND; Moshkov AV; Khaĭdukova AL
    Tsitologiia; 2003; 45(11):1149-59. PubMed ID: 14989154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valinomycin-stimulated 86 rubidium transport and efflux from lens.
    Kresca L; Cotlier E
    Invest Ophthalmol; 1974 Apr; 13(4):310-2. PubMed ID: 4818817
    [No Abstract]   [Full Text] [Related]  

  • 15. [Influence of various parameters on the uptake of 86 Rb by normal human erythrocytes].
    Plagne R; Bidet JM; Chollet Ph; bard JJ; Sauvezie B
    C R Seances Soc Biol Fil; 1974; 168(2-3):289-94. PubMed ID: 4282288
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium-activated potassium channels in lymphocytes.
    Rink TJ; Deutsch C
    Cell Calcium; 1983 Dec; 4(5-6):463-73. PubMed ID: 6323008
    [No Abstract]   [Full Text] [Related]  

  • 17. Toxin sensitivity of the calcium-dependent rubidium efflux in Madin-Darby canine kidney cells.
    Tauc M; Gastineau M; Poujeol P
    Biochem Biophys Res Commun; 1993 Jan; 190(2):596-601. PubMed ID: 7678959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is an early calcium flux necessary to stimulate lymphocytes?
    Hesketh TR; Smith GA; Houslay MD; Warren GB; Metcalfe JC
    Nature; 1977 Jun; 267(5611):490-4. PubMed ID: 327331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of the cryopreserving process on rubidium uptake by human spermatozoa.
    Glander HJ; Haustein UF
    Int J Biol Res Pregnancy; 1982; 3(2):60-5. PubMed ID: 7076340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in the alkaline cation transport across the plasma membrane of CHO-K1 cell lines resistant to ethidium bromide].
    Marakhova II; Pospelova TV; Vereninov AA; Ignatova TN
    Tsitologiia; 1981 Apr; 23(4):410-8. PubMed ID: 7256844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.