These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6811551)

  • 41. Isolation and identification of beta-lysine as an intermediate in lysine fermentation.
    Costilow RN; Rochovansky OM; Barker HA
    J Biol Chem; 1966 Apr; 241(7):1573-80. PubMed ID: 5946615
    [No Abstract]   [Full Text] [Related]  

  • 42. The stereochemistry of the formation of the methyl group in the glutamate mutase-catalysed reaction in Clostridium tetanomorphum.
    Hartrampf G; Buckel W
    FEBS Lett; 1984 Jun; 171(1):73-8. PubMed ID: 6723977
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.
    Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A
    Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 13C NMR studies of butyric fermentation in Clostridium kluyveri.
    Smith GM; Kim BW; Franke AA; Roberts JD
    J Biol Chem; 1985 Nov; 260(25):13509-12. PubMed ID: 4055746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium.
    Lewis AL; Robinson LS; Agarwal K; Lewis WG
    Glycobiology; 2016 Oct; 26(10):1107-1119. PubMed ID: 27613803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of components in Fusobacterium nucleatum chemostat-culture supernatants that are potent inhibitors of human gingival fibroblast proliferation.
    Bartold PM; Gully NJ; Zilm PS; Rogers AH
    J Periodontal Res; 1991 Jul; 26(4):314-22. PubMed ID: 1831499
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene.
    Louis P; Young P; Holtrop G; Flint HJ
    Environ Microbiol; 2010 Feb; 12(2):304-14. PubMed ID: 19807780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586.
    Yoshida Y; Ito S; Kamo M; Kezuka Y; Tamura H; Kunimatsu K; Kato H
    Microbiology (Reading); 2010 Jul; 156(Pt 7):2260-2269. PubMed ID: 20413556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824.
    Green EM; Boynton ZL; Harris LM; Rudolph FB; Papoutsakis ET; Bennett GN
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2079-86. PubMed ID: 8760920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation of a corncob (coaggregation) receptor polypeptide from Fusobacterium nucleatum.
    Kaufman J; DiRienzo JM
    Infect Immun; 1989 Feb; 57(2):331-7. PubMed ID: 2912893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes of fermentation pathways of fecal microbial communities associated with a drug treatment that increases dietary starch in the human colon.
    Wolin MJ; Miller TL; Yerry S; Zhang Y; Bank S; Weaver GA
    Appl Environ Microbiol; 1999 Jul; 65(7):2807-12. PubMed ID: 10388668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in growth and polyglucose synthesis in response to fructose metabolism by Fusobacterium nucleatum grown in continuous culture.
    Zilm PS; Gully NJ; Rogers AH
    Oral Microbiol Immunol; 2003 Aug; 18(4):260-2. PubMed ID: 12823803
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contribution of acetate to butyrate formation by human faecal bacteria.
    Duncan SH; Holtrop G; Lobley GE; Calder AG; Stewart CS; Flint HJ
    Br J Nutr; 2004 Jun; 91(6):915-23. PubMed ID: 15182395
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction.
    Moss M; Frey PA
    J Biol Chem; 1987 Nov; 262(31):14859-62. PubMed ID: 3117791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolism of L-beta-lysine by a Pseudomonas: purification and properties of 3-keto-6-acetamidohexanoate cleavage enzyme.
    Ohsugi M; Kahn J; Hensley C; Chew S; Bozler G; Robertson JM; Barker HA
    Arch Biochem Biophys; 1980 Aug; 203(1):437-52. PubMed ID: 6773479
    [No Abstract]   [Full Text] [Related]  

  • 56. The response to oxidative stress of Fusobacterium nucleatum grown in continuous culture.
    Diaz PI; Zilm PS; Rogers AH
    FEMS Microbiol Lett; 2000 Jun; 187(1):31-4. PubMed ID: 10828396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Observation of a second substrate radical intermediate in the reaction of lysine 2,3-aminomutase: a radical centered on the beta-carbon of the alternative substrate, 4-thia-L-lysine.
    Wu W; Lieder KW; Reed GH; Frey PA
    Biochemistry; 1995 Aug; 34(33):10532-7. PubMed ID: 7654708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. METABOLISM OF OMEGA-AMINO ACIDS. V. ENERGETICS OF THE GAMMA-AMINOBUTYRATE FERMENTATION BY CLOSTRIDIUM AMINOBUTYRICUM.
    HARDMAN JK; STADTMAN TC
    J Bacteriol; 1963 Jun; 85(6):1326-33. PubMed ID: 14047225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pleomorphism of fusobacteria isolated from the cockroach hindgut.
    Foglesong MA; Cruden DL; Markovetz AJ
    J Bacteriol; 1984 May; 158(2):474-80. PubMed ID: 6144663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein secretion systems in Fusobacterium nucleatum: genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis.
    Desvaux M; Khan A; Beatson SA; Scott-Tucker A; Henderson IR
    Biochim Biophys Acta; 2005 Jul; 1713(2):92-112. PubMed ID: 15993836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.