These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6811571)

  • 1. The role of the single tryptophan residue in the structure and function of ribonuclease T1.
    Fukunaga Y; Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1982 Jul; 92(1):143-53. PubMed ID: 6811571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence titrations of residue 59 and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1.
    Fukunaga Y; Sakiyama F
    J Biochem; 1982 Jul; 92(1):155-61. PubMed ID: 6811572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of ribonuclease T1 with ozone.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1978 Mar; 83(3):771-81. PubMed ID: 417075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence characteristics of kynurenine and N'-formylkynurenine. Their use as reporters of the environment of tryptophan 62 in hen egg-white lysozyme.
    Fukunaga Y; Katsuragi Y; Izumi T; Sakiyama F
    J Biochem; 1982 Jul; 92(1):129-41. PubMed ID: 7118867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding between thermolysin and talopeptin (MKI) in which the tryptophan residue was converted into kynurenine.
    Kitagishi K; Hiromi K; Tokushige M
    J Biochem; 1983 Apr; 93(4):1045-54. PubMed ID: 6863233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of tryptophan residues and stability changes in proteins.
    Okajima T; Kawata Y; Hamaguchi K
    Biochemistry; 1990 Oct; 29(39):9168-75. PubMed ID: 2125474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorescence and optically detected magnetic resonance measurements of the 2'AMP and 2'GMP complexes of a mutant ribonuclease T1 (Y45W) in solution: correlation with X-ray crystal structures.
    Lam WC; Maki AH; Itoh T; Hakoshima T
    Biochemistry; 1992 Jul; 31(29):6756-60. PubMed ID: 1322171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of tryptophan residues in ribonuclease from a Rhizopus sp.
    Sanda A; Irie M
    J Biochem; 1980 Apr; 87(4):1079-87. PubMed ID: 7390980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Photo-oxidation and carboxymethylation of guanylribonuclease Pch1].
    Grishchenko VM; Markelova NIu
    Biokhimiia; 1979 Aug; 44(8):1447-53. PubMed ID: 40625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of substrate analogs to hen lysozyme in which Trp 62 is modified to kynurenine.
    Teshima K; Kuramitsu S; Hamaguchi K; Sakiyama F; Mizuno K; Yamasaki N
    J Biochem; 1980 Apr; 87(4):1015-27. PubMed ID: 7390977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in nucleolytic activity of ribonuclease T1 by substitution of tryptophan 45 for tyrosine 45.
    Nishikawa S; Morioka H; Kimura T; Ueda Y; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Eur J Biochem; 1988 Apr; 173(2):389-94. PubMed ID: 3129293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of an active lysozyme derivative: Kyn 62-lysozyme.
    Yamasaki N; Tsujita T; Eto T; Masuda S; Mizuno K; Sakiyama F
    J Biochem; 1979 Nov; 86(5):1291-300. PubMed ID: 42644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function relationship of xylanase: fluorimetric analysis of the tryptophan environment.
    Bandivadekar KR; Deshpande VV
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):583-7. PubMed ID: 8615833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence.
    Axelsen PH; Prendergast FG
    Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel fluorogenic substrate for ribonucleases. Synthesis and enzymatic characterization.
    Zelenko O; Neumann U; Brill W; Pieles U; Moser HE; Hofsteenge J
    Nucleic Acids Res; 1994 Jul; 22(14):2731-9. PubMed ID: 8052528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex.
    MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W
    Proteins; 1989; 6(1):20-31. PubMed ID: 2558378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modifications of ribonuclease U1.
    Hashimoto J; Takahashi K
    J Biochem; 1977 Apr; 81(4):1175-80. PubMed ID: 18450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.