These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6811572)

  • 1. Fluorescence titrations of residue 59 and tyrosine in Kyn 59-RNase T1 and NFK 59-RNase T1.
    Fukunaga Y; Sakiyama F
    J Biochem; 1982 Jul; 92(1):155-61. PubMed ID: 6811572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the single tryptophan residue in the structure and function of ribonuclease T1.
    Fukunaga Y; Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1982 Jul; 92(1):143-53. PubMed ID: 6811571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of ribonuclease T1 with ozone.
    Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1978 Mar; 83(3):771-81. PubMed ID: 417075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-tritium exchange and nuclear magnetic resonance titrations of the histidine residues in ribonuclease St and analysis of their microenvironment.
    Miyamoto K; Arata Y; Matsuo H; Narita K
    J Biochem; 1981 Jan; 89(1):49-59. PubMed ID: 6260763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of substrate analogs to hen lysozyme in which Trp 62 is modified to kynurenine.
    Teshima K; Kuramitsu S; Hamaguchi K; Sakiyama F; Mizuno K; Yamasaki N
    J Biochem; 1980 Apr; 87(4):1015-27. PubMed ID: 7390977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence characteristics of kynurenine and N'-formylkynurenine. Their use as reporters of the environment of tryptophan 62 in hen egg-white lysozyme.
    Fukunaga Y; Katsuragi Y; Izumi T; Sakiyama F
    J Biochem; 1982 Jul; 92(1):129-41. PubMed ID: 7118867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the state of tyrosyl residues in a ribonuclease from seminal vesicles.
    Irie M; Suito F
    J Biochem; 1975 May; 77(5):1075-84. PubMed ID: 239931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrophotometric titration of a single carboxyl group at the active site of ribonuclease T1.
    Walz FG
    Biochemistry; 1977 Oct; 16(21):4568-71. PubMed ID: 20934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala.
    McNutt M; Mullins LS; Raushel FM; Pace CN
    Biochemistry; 1990 Aug; 29(33):7572-6. PubMed ID: 1980207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding between thermolysin and talopeptin (MKI) in which the tryptophan residue was converted into kynurenine.
    Kitagishi K; Hiromi K; Tokushige M
    J Biochem; 1983 Apr; 93(4):1045-54. PubMed ID: 6863233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectroscopic study on the structure of ribonuclease F1 and the binding mode of inhibitor.
    Takeuchi H; Harada I; Yoshida H
    Biochim Biophys Acta; 1991 Jul; 1078(3):307-12. PubMed ID: 1650248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function.
    Pérez-Cañadillas JM; Campos-Olivas R; Lacadena J; Martínez del Pozo A; Gavilanes JG; Santoro J; Rico M; Bruix M
    Biochemistry; 1998 Nov; 37(45):15865-76. PubMed ID: 9843392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Photo-oxidation and carboxymethylation of guanylribonuclease Pch1].
    Grishchenko VM; Markelova NIu
    Biokhimiia; 1979 Aug; 44(8):1447-53. PubMed ID: 40625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel fluorogenic substrate for ribonucleases. Synthesis and enzymatic characterization.
    Zelenko O; Neumann U; Brill W; Pieles U; Moser HE; Hofsteenge J
    Nucleic Acids Res; 1994 Jul; 22(14):2731-9. PubMed ID: 8052528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific protein-nucleic acid recognition in ribonuclease T1-2'-guanylic acid complex: an X-ray study.
    Heinemann U; Saenger W
    Nature; 1982 Sep; 299(5878):27-31. PubMed ID: 6287278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modifications of ribonuclease U1.
    Hashimoto J; Takahashi K
    J Biochem; 1977 Apr; 81(4):1175-80. PubMed ID: 18450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of the equilibrium, association and dissociation of 2'GMP and 3'GMP with ribonuclease T1 at pH 5.3.
    MacKerell AD; Rigler R; Hahn U; Saenger W
    Biochim Biophys Acta; 1991 Mar; 1073(2):357-65. PubMed ID: 1849008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2).
    Laurents DV; Huyghues-Despointes BM; Bruix M; Thurlkill RL; Schell D; Newsom S; Grimsley GR; Shaw KL; Treviño S; Rico M; Briggs JM; Antosiewicz JM; Scholtz JM; Pace CN
    J Mol Biol; 2003 Jan; 325(5):1077-92. PubMed ID: 12527309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.