BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6811590)

  • 1. Reduced pyridine nucleotides and cytochrome b5 as electron donors for prostaglandin synthetase reconstituted in dimyristyl phosphatidylcholine vesicles.
    Strittmatter P; Machuga ET; Roth GJ
    J Biol Chem; 1982 Oct; 257(20):11883-6. PubMed ID: 6811590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent cross-linking of the active sites of vesicle-bound cytochrome b5 and NADH-cytochrome b5 reductase.
    Hackett CS; Strittmatter P
    J Biol Chem; 1984 Mar; 259(5):3275-82. PubMed ID: 6699018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent reduction of mammalian hepatic microsomal cytochrome b5: some properties of the enzyme system catalyzing the endogenous reduction of pyridine nucleotides.
    Kulkarni AP; Hodgson E
    Int J Biochem; 1982; 14(9):825-30. PubMed ID: 7128914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of enzyme activities with fluorescence anisotropy of dansyl-labeled cytochrome b5/NADH-cytochrome-b5 reductase systems in phosphatidylcholine vesicles.
    Pugh EL; Kates M; Szabo AG; Krajcarski DT
    Biochim Biophys Acta; 1989 Nov; 985(3):255-65. PubMed ID: 2804107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction and electron transfer between cytochrome b5 and cytochrome P-450 in the reconstituted p-nitroanisole O-demethylase system.
    Sugiyama T; Miki N; Miyake Y; Yamano T
    J Biochem; 1982 Dec; 92(6):1793-803. PubMed ID: 7161259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of cytochrome b5 in reconstituted monooxygenase systems containing various forms of hepatic microsomal cytochrome P-450.
    Imai Y
    J Biochem; 1981 Feb; 89(2):351-62. PubMed ID: 6972374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palmitoyl-CoA elongation in brain microsomes: dependence on cytochrome b5 and NADH-cytochrome b5 reductase.
    Takeshita M; Tamura M; Yoshida S; Yubisui T
    J Neurochem; 1985 Nov; 45(5):1390-5. PubMed ID: 2995584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii.
    Utecht RE; Kurtz DM
    Biochim Biophys Acta; 1988 Mar; 953(2):164-78. PubMed ID: 2831990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of non-myristoylated NADH-cytochrome b5 reductase with cytochrome b5-dimyristoylphosphatidylcholine vesicles.
    Strittmatter P; Kittler JM; Coghill JE; Ozols J
    J Biol Chem; 1993 Nov; 268(31):23168-71. PubMed ID: 8226835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive activation of mitomycin C by NADH:cytochrome b5 reductase.
    Hodnick WF; Sartorelli AC
    Cancer Res; 1993 Oct; 53(20):4907-12. PubMed ID: 8402680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of divalent cations on NADH-dependent and NADPH-dependent cytochrome b5 reduction by hepatic microsomes.
    Tamura M; Yoshida S; Tamura T; Saitoh T; Takeshita M
    Arch Biochem Biophys; 1990 Aug; 280(2):313-9. PubMed ID: 2369123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The opposite effect of bivalent cations on cytochrome b5 reduction by NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase.
    Tamura M; Yubisui T; Takeshita M
    Biochem J; 1988 May; 251(3):711-5. PubMed ID: 3137923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.