These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6811753)

  • 1. Unfolding and refolding of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    J Mol Biol; 1982 Apr; 156(4):891-910. PubMed ID: 6811753
    [No Abstract]   [Full Text] [Related]  

  • 2. Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond.
    Goto Y; Hamaguchi K
    J Mol Biol; 1982 Apr; 156(4):911-26. PubMed ID: 6811754
    [No Abstract]   [Full Text] [Related]  

  • 3. Unfolding and refolding of a type kappa immunoglobulin light chain and its variable and constant fragments.
    Tsunenaga M; Goto Y; Kawata Y; Hamaguchi K
    Biochemistry; 1987 Sep; 26(19):6044-51. PubMed ID: 3120770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ammonium sulfate on the unfolding and refolding of the variable and constant fragments of an immunoglobulin light chain.
    Goto Y; Ichimura N; Hamaguchi K
    Biochemistry; 1988 Mar; 27(5):1670-7. PubMed ID: 3130099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding and refolding of the constant fragment of the immunoglobulin light chain containing an intramolecular mercury bridge.
    Goto Y; Hamaguchi K
    J Biochem; 1986 May; 99(5):1501-11. PubMed ID: 3086308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-induced unfolding of the constant fragment of the immunoglobulin light chain: effect of reduction of the intrachain disulfide bond.
    Ashikari Y; Arata Y; Hamaguchi K
    J Biochem; 1985 Feb; 97(2):517-28. PubMed ID: 3924903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of fluorescence energy transfer to characterize the compactness of the constant fragment of an immunoglobulin light chain in the early stage of folding.
    Kawata Y; Hamaguchi K
    Biochemistry; 1991 May; 30(18):4367-73. PubMed ID: 1902379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation and stability of the constant fragment of the immunoglobulin light chain containing an intramolecular mercury bridge.
    Goto Y; Hamaguchi K
    Biochemistry; 1986 May; 25(10):2821-8. PubMed ID: 3087410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refolding of the immunoglobulin light chain.
    Goto Y; Azuma T; Hamaguchi K
    J Biochem; 1979 Jun; 85(6):1427-38. PubMed ID: 110798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins.
    Lin LN; Brandts JF
    Biochemistry; 1978 Sep; 17(19):4102-10. PubMed ID: 30472
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of amino-terminal residues in the folding of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    Biochemistry; 1987 Apr; 26(7):1879-84. PubMed ID: 3109473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of proline mutations on the unfolding and refolding of human lysozyme: the slow refolding kinetic phase does not result from proline cis-trans isomerization.
    Herning T; Yutani K; Taniyama Y; Kikuchi M
    Biochemistry; 1991 Oct; 30(41):9882-91. PubMed ID: 1911779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The scFv fragment of the antibody hu4D5-8: evidence for early premature domain interaction in refolding.
    Jäger M; Gehrig P; Plückthun A
    J Mol Biol; 2001 Feb; 305(5):1111-29. PubMed ID: 11162118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic circular dichroism shows that the S-peptide alpha-helix of ribonuclease S unfolds fast and refolds slowly.
    Labhardt AM
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7674-8. PubMed ID: 6595655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the intrachain disulfide bond in the conformation and stability of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    J Biochem; 1979 Nov; 86(5):1433-41. PubMed ID: 118170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rate-limiting steps for the folding of an antibody scFv fragment.
    Jäger M; Plückthun A
    FEBS Lett; 1997 Nov; 418(1-2):106-10. PubMed ID: 9414105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of the unfolding-refolding of horse muscle phosphoglycerate kinase induced by guanidine hydrochloride.
    Betton JM; Desmadril M; Mitraki A; Yon JM
    Biochemistry; 1985 Aug; 24(17):4570-7. PubMed ID: 4063338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incomplete Refolding of Antibody Light Chains to Non-Native, Protease-Sensitive Conformations Leads to Aggregation: A Mechanism of Amyloidogenesis in Patients?
    Morgan GJ; Usher GA; Kelly JW
    Biochemistry; 2017 Dec; 56(50):6597-6614. PubMed ID: 29200282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation of the constant fragment of the immunoglobulin light chain: effect of cleavage of the polypeptide chain and the disulfide bond.
    Goto Y; Tsunenaga M; Kawata Y; Hamaguchi K
    J Biochem; 1987 Feb; 101(2):319-29. PubMed ID: 3108243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
    Bann JG; Frieden C
    Biochemistry; 2004 Nov; 43(43):13775-86. PubMed ID: 15504040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.