These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6812105)

  • 1. Xanthines alter behavior maintained by intracranial electrical stimulation and an operant schedule.
    Valdes JJ; McGuire PS; Annau Z
    Psychopharmacology (Berl); 1982; 76(4):325-8. PubMed ID: 6812105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical Abuse Potential Assessment of Flibanserin: Effects on Intracranial Self-Stimulation in Female and Male Rats.
    Lazenka MF; Blough BE; Negus SS
    J Sex Med; 2016 Mar; 13(3):338-49. PubMed ID: 26831817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of caffeine and its metabolite paraxanthine on intracranial self-stimulation in male rats.
    Lazenka MF; Moeller FG; Negus SS
    Exp Clin Psychopharmacol; 2015 Apr; 23(2):71-80. PubMed ID: 25844631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abuse-related effects of µ-opioid analgesics in an assay of intracranial self-stimulation in rats: modulation by chronic morphine exposure.
    Altarifi AA; Rice KC; Negus SS
    Behav Pharmacol; 2013 Sep; 24(5-6):459-70. PubMed ID: 23881045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Δ9-tetrahydrocannabinol and endocannabinoid degradative enzyme inhibitors attenuate intracranial self-stimulation in mice.
    Wiebelhaus JM; Grim TW; Owens RA; Lazenka MF; Sim-Selley LJ; Abdullah RA; Niphakis MJ; Vann RE; Cravatt BF; Wiley JL; Negus SS; Lichtman AH
    J Pharmacol Exp Ther; 2015 Feb; 352(2):195-207. PubMed ID: 25398241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the effects of amphetamine on brain self-stimulation behavior.
    Schaefer GJ; Michael RP
    Behav Brain Res; 1988 Jul; 29(1-2):93-101. PubMed ID: 3261172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between alcohol and nicotine on intracranial self-stimulation and locomotor activity in rats.
    Schaefer GJ; Michael RP
    Drug Alcohol Depend; 1992 Apr; 30(1):37-47. PubMed ID: 1591979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motivational effects of nicotine as measured by the runway method using priming stimulation of intracranial self-stimulation behavior.
    Sagara H; Kitamura Y; Esumi S; Sendo T; Araki H; Gomita Y
    Acta Med Okayama; 2008 Aug; 62(4):227-33. PubMed ID: 18766205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of pimozide on response-rate and choice accuracy in a self-stimulation paradigm in mice.
    Bowers W; Hamilton M; Zacharko RM; Anisman H
    Pharmacol Biochem Behav; 1985 Apr; 22(4):521-6. PubMed ID: 2859610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of paclitaxel effects on intracranial self-stimulation in male and female rats: comparison to mechanical sensitivity.
    Legakis LP; Bigbee JW; Negus SS
    Behav Pharmacol; 2018 Apr; 29(2 and 3-Spec Issue):290-298. PubMed ID: 29369054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of amphetamine isomers on SN self-stimulation: evidence for DA neuron subtypes.
    Franklin KB; Vaccarino FJ
    Pharmacol Biochem Behav; 1983 May; 18(5):747-51. PubMed ID: 6856648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pain- and analgesia-related manipulations on intracranial self-stimulation in rats: further studies on pain-depressed behavior.
    Pereira Do Carmo G; Stevenson GW; Carlezon WA; Negus SS
    Pain; 2009 Jul; 144(1-2):170-7. PubMed ID: 19435650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial self-stimulation in FAST and SLOW mice: effects of alcohol and cocaine.
    Fish EW; Robinson JE; Krouse MC; Hodge CW; Reed C; Phillips TJ; Malanga CJ
    Psychopharmacology (Berl); 2012 Apr; 220(4):719-30. PubMed ID: 21983918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral characterization of caffeine and adenosine agonists during chronic caffeine exposure.
    Newland MC; Brown K
    Behav Pharmacol; 1997 Feb; 8(1):17-30. PubMed ID: 9832997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous rate-independent and rate-dependent assessment of intracranial self-stimulation: evidence for the direct involvement of dopamine in brain reinforcement mechanisms.
    Zarevics P; Setler PE
    Brain Res; 1979 Jun; 169(3):499-512. PubMed ID: 312681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of effects produced by nicotine and the α4β2-selective agonist 5-I-A-85380 on intracranial self-stimulation in rats.
    Freitas K; Carroll FI; Negus SS
    Exp Clin Psychopharmacol; 2016 Feb; 24(1):65-75. PubMed ID: 26461167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the molecular structure of behavior: separate effects of caffeine, cocaine, and adenosine agonists on interresponse times and lever-press durations.
    Newland MC
    Behav Pharmacol; 1997 Feb; 8(1):1-16. PubMed ID: 9832996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine receptor antagonists reverse amphetamine-induced behavioral alteration on a differential reinforcement for low-rate (DRL) operant task in the rat.
    Cheng RK; Liao RM
    Chin J Physiol; 2007 Apr; 50(2):77-88. PubMed ID: 17608145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphetamine, chlorpromazine and clonidine effects on self-stimulation in caudate or hypothalamus of the squirrel monkey.
    Spencer J; Revzin A
    Pharmacol Biochem Behav; 1976 Aug; 5(2):149-56. PubMed ID: 825884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acute and repeated dosing of the synthetic cannabinoid CP55,940 on intracranial self-stimulation in mice.
    Grim TW; Wiebelhaus JM; Morales AJ; Negus SS; Lichtman AH
    Drug Alcohol Depend; 2015 May; 150():31-7. PubMed ID: 25772438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.