These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6812110)

  • 1. Effects of antimuscarinic cholinergic drugs injected systemically or into the hippocampo-entorhinal area upon passive avoidance learning in young rats.
    Blozovski D; Hennocq N
    Psychopharmacology (Berl); 1982; 76(4):351-8. PubMed ID: 6812110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent effects of hippocampo-entorhinal atropine on passive avoidance learning in the young rat.
    Blozovski D; Harris P
    Neurosci Lett; 1984 Dec; 52(3):293-8. PubMed ID: 6521972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficits in passive avoidance learning in young rats following mecamylamine injections in the hippocampo-entorhinal area.
    Blozovski D
    Exp Brain Res; 1983; 50(2-3):442-8. PubMed ID: 6641878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PA-learning in young rats with dorsal hippocampal- and hippocampo-entorhinal atropine.
    Blozovski D
    Pharmacol Biochem Behav; 1979 Mar; 10(3):369-72. PubMed ID: 450949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficits in passive-avoidance learning following atropine in the developing rat.
    Blozovski D; Cudennec A; Garrigou D
    Psychopharmacology (Berl); 1977 Oct; 54(2):139-43. PubMed ID: 412208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of extinction by scopolamine.
    Prado-Alcalá RA; Haiek M; Rivas S; Roldan-Roldan G; Quirarte GL
    Physiol Behav; 1994 Jul; 56(1):27-30. PubMed ID: 8084904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose- and time-dependent scopolamine-induced recovery of an inhibitory avoidance response after its extinction in rats.
    Roldán G; Cobos-Zapiaín G; Quirarte GL; Prado-Alcalá RA
    Behav Brain Res; 2001 Jun; 121(1-2):173-9. PubMed ID: 11275294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial and passive avoidance learning.
    Riekkinen P; Sirviö J; Aaltonen M; Riekkinen P
    Pharmacol Biochem Behav; 1990 Nov; 37(3):405-10. PubMed ID: 2087481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scopolamine deficits in negative patterning discrimination: evidence for a role of the central cholinergic system in retention but not acquisition of non-spatial configural association learning.
    Moran PM
    Behav Brain Res; 1992 Jun; 48(2):187-97. PubMed ID: 1616609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory-modulatory effects of centrally acting noradrenergic drugs: possible involvement of brain cholinergic mechanisms.
    Introini-Collison IB; Baratti CM
    Behav Neural Biol; 1992 May; 57(3):248-55. PubMed ID: 1319706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double dissociation between the effects of muscarinic antagonists and benzodiazepine receptor agonists on the acquisition and retention of passive avoidance.
    Cole BJ; Jones GH
    Psychopharmacology (Berl); 1995 Mar; 118(1):37-41. PubMed ID: 7597120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of muscarinic receptor agonists and antagonists on alpha 2-adrenoceptors in rat brain.
    Hollingsworth PJ; Smith CB
    Eur J Pharmacol; 1989 Sep; 168(2):159-67. PubMed ID: 2558024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implication of amygdaloid muscarinic cholinergic mechanisms in passive avoidance learning in the developing rat.
    Blozovski D; Dumery V
    Behav Brain Res; 1984 Aug; 13(2):97-106. PubMed ID: 6487411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of amygdaloid cholinergic mediation of passive avoidance learning in the rat. I. Muscarinic mechanisms.
    Duméry V; Blozovski D
    Exp Brain Res; 1987; 67(1):61-9. PubMed ID: 3622683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive avoidance deficits following lesions of the posteroventral hippocampo-subiculo-entorhinal area in the developing rat.
    Blozovski D; Harris P
    J Physiol (Paris); 1986; 81(5):374-8. PubMed ID: 3572829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging cholinergic mechanisms and ontogeny of response inhibition in the mouse.
    Ray D; Nagy ZM
    J Comp Physiol Psychol; 1978 Apr; 92(2):335-49. PubMed ID: 670457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticholinergic drugs, blood-brain-barrier and tonic immobility in chickens.
    Hughes RA
    Physiol Behav; 1982 Jul; 29(1):67-71. PubMed ID: 7122737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quaternary forms of classical muscarinic antagonists distinguish subpopulations of muscarinic receptors: correlation with gallamine-defined subpopulations.
    Ellis J; Lenox RH
    Biochem Biophys Res Commun; 1985 Feb; 126(3):1242-50. PubMed ID: 3977914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-HT1A and muscarinic acetylcholine receptors jointly regulate passive avoidance behavior.
    Riekkinen P
    Eur J Pharmacol; 1994 Sep; 262(1-2):77-90. PubMed ID: 7813581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mediation of passive avoidance learning by nicotinic hippocampo-entorhinal components in young rats.
    Blozovski D
    Dev Psychobiol; 1985 Jul; 18(4):355-66. PubMed ID: 4043552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.