These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6812118)

  • 1. Altered sensitivity to d-methylamphetamine, apomorphine, and haloperidol in rhesus monkeys depleted of caudate dopamine by repeated administration of d-methylamphetamine.
    Finnegan KT; Ricaurte G; Seiden LS; Schuster CR
    Psychopharmacology (Berl); 1982; 77(1):43-52. PubMed ID: 6812118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity changes to dopaminergic agents in fine motor control of rhesus monkeys after repeated methamphetamine administration.
    Ando K; Johanson CE; Seiden LS; Schuster CR
    Pharmacol Biochem Behav; 1985 May; 22(5):737-43. PubMed ID: 4011634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dopaminergic agents on eye tracking before and after repeated methamphetamine.
    Ando K; Johanson CE; Schuster CR
    Pharmacol Biochem Behav; 1986 Mar; 24(3):693-9. PubMed ID: 3703903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in sensitivity of release modulating dopamine autoreceptors after chronic treatment with haloperidol.
    Nowak JZ; Arbilla S; Galzin AM; Langer SZ
    J Pharmacol Exp Ther; 1983 Aug; 226(2):558-64. PubMed ID: 6875865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial self-stimulation in orbitofrontal cortex and caudate nucleus of rhesus monkey: effects of apomorphine, pimozide, and spiroperidol.
    Phillips AG; Mora F; Rolls ET
    Psychopharmacology (Berl); 1979 Mar; 62(1):79-82. PubMed ID: 108751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of repeated haloperidol and apomorphine administration on the development of tolerance for catalepsy and dopamine receptor hypersensitivity in mice].
    Zharkovskiĭ AM; Matvienko OA; Nurk AM
    Biull Eksp Biol Med; 1984 Oct; 98(10):444-6. PubMed ID: 6541951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apomorphine-haloperidol interactions: different types of antagonism in cortical and subcortical brain regions.
    Bacopoulos NG; Roth RH
    Brain Res; 1981 Feb; 205(2):313-9. PubMed ID: 7470869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haloperidol and apomorphine differentially affect neuropeptidase activity.
    Waters SM; Konkoy CS; Davis TP
    J Pharmacol Exp Ther; 1996 Apr; 277(1):113-20. PubMed ID: 8613907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term effects of repeated methylamphetamine administration on monoamine neurons in the rhesus monkey brain.
    Preston KL; Wagner GC; Schuster CR; Seiden LS
    Brain Res; 1985 Jul; 338(2):243-8. PubMed ID: 2411342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interneurones are probably not involved in the presynaptic dopaminergic control of dopamine release in rabbit caudate nucleus.
    Jackisch R; Zumstein A; Hertting G; Starke K
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov; 314(2):129-33. PubMed ID: 7453832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methamphetamine, physostigmine, atropine and mecamylamine: effects on force lever performance.
    Preston KL; Schuster CR; Seiden LS
    Pharmacol Biochem Behav; 1985 Nov; 23(5):781-8. PubMed ID: 4080764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcing and discriminative stimulus effects of RTI 111, a 3-phenyltropane analog, in rhesus monkeys: interaction with methamphetamine.
    Ranaldi R; Anderson KG; Carroll FI; Woolverton WL
    Psychopharmacology (Berl); 2000 Dec; 153(1):103-10. PubMed ID: 11255920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dopamine agents on schedule- and deprivation-induced drinking in rats.
    Snodgrass SH; Allen JD
    Pharmacol Biochem Behav; 1987 Jul; 27(3):463-75. PubMed ID: 3659069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Neurochemical mechanisms of caudate nucleus participation in the performance of food-getting behavior].
    Shugalev NP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(6):1167-72. PubMed ID: 7467838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for dopamine autoreceptors in mesocortical dopamine neurons.
    Fadda F; Gessa GL; Marcou M; Mosca E; Rossetti Z
    Brain Res; 1984 Feb; 293(1):67-72. PubMed ID: 6423212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dopamine-acetylcholine link in the caudate-putamen complex which mediates metabolic rate.
    Ho LT; Lin MT
    Metabolism; 1982 Aug; 31(8):791-6. PubMed ID: 7098849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of haloperidol and clozapine on the density of "perforated" synapses in caudate, nucleus accumbens, and medial prefrontal cortex.
    Meshul CK; Janowsky A; Casey DE; Stallbaumer RK; Taylor B
    Psychopharmacology (Berl); 1992; 106(1):45-52. PubMed ID: 1531388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholamine-sensitive adenylate cyclase in frontal cortex of primate brain.
    Ahn HS; Mishra RK; Demirjian C; Makman MH
    Brain Res; 1976 Nov; 116(3):437-54. PubMed ID: 824023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersensitivity of caudate neurones after repeated administration of haloperidol.
    Yarbrough GG
    Eur J Pharmacol; 1975 Apr; 31(2):367-9. PubMed ID: 1149799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine.
    Taylor JR; Robbins TW
    Psychopharmacology (Berl); 1986; 90(3):390-7. PubMed ID: 3097729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.