BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 6812528)

  • 1. Regulation of proline catabolism in Pseudomonas aeruginosa PAO.
    Meile L; Soldati L; Leisinger T
    Arch Microbiol; 1982 Aug; 132(2):189-93. PubMed ID: 6812528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymes metabolizing ornithine-proline pathway in the bovine eye.
    Hayasaka S; Matsuzawa T; Shiono T; Mizuno K; Ishiguro I
    Exp Eye Res; 1982 Apr; 34(4):635-8. PubMed ID: 6896186
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymes in ornithine-proline metabolic pathway in bovine lens.
    Shiono T; Hayasaka S; Hara S; Mizuno K; Matsuzawa T; Ishiguro I
    Jpn J Ophthalmol; 1985; 29(3):305-9. PubMed ID: 3841168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline.
    Brandriss MC; Magasanik B
    J Bacteriol; 1979 Nov; 140(2):498-503. PubMed ID: 387737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of the bifunctional proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa.
    Meile L; Leisinger T
    Eur J Biochem; 1982 Dec; 129(1):67-75. PubMed ID: 6819140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline.
    Valle D; Goodman SI; Harris SC; Phang JM
    J Clin Invest; 1979 Nov; 64(5):1365-70. PubMed ID: 500817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1981 Mar; 145(3):1359-64. PubMed ID: 7009582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase.
    Krishna RV; Beilstein P; Leisinger T
    Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: mutation causing constitutive enzyme expression.
    Brandriss MC; Magasanik B
    J Bacteriol; 1979 Nov; 140(2):504-7. PubMed ID: 387738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Proline nutrition and catabolism in Staphylococcus saprophyticus.
    Deutch CE
    Antonie Van Leeuwenhoek; 2011 May; 99(4):781-93. PubMed ID: 21253822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans.
    Cubero B; Gómez D; Scazzocchio C
    J Bacteriol; 2000 Jan; 182(1):233-5. PubMed ID: 10613888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fasciola gigantica: enzymes of the ornithine-proline-glutamate pathway--characterization of delta1-pyrroline-5-carboxylate dehydrogenase.
    Mohamed SA; Mohamed TM; Fahmy AS; El-Badry MO; Abdel-Gany SS
    Exp Parasitol; 2008 Jan; 118(1):47-53. PubMed ID: 17655846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1980 Sep; 143(3):1403-10. PubMed ID: 6997271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of arginine and proline catabolism in Bacillus licheniformis.
    Laishley EJ; Bernlohr RW
    J Bacteriol; 1968 Aug; 96(2):322-9. PubMed ID: 5674049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation.
    Deuschle K; Funck D; Forlani G; Stransky H; Biehl A; Leister D; van der Graaff E; Kunze R; Frommer WB
    Plant Cell; 2004 Dec; 16(12):3413-25. PubMed ID: 15548746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of arginine metabolism in the lizard Calotes versicolor.
    Baby TG; Reddy SR
    Adv Exp Med Biol; 1982; 153():303-10. PubMed ID: 6897696
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schistosomiasis: proline production and release by ova.
    Isseroff H; Bock K; Owczarek A; Smith KR
    J Parasitol; 1983 Apr; 69(2):285-9. PubMed ID: 6687901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N2-succinylornithine in ornithine catabolism of Pseudomonas aeruginosa.
    Vander Wauven C; Jann A; Haas D; Leisinger T; Stalon V
    Arch Microbiol; 1988; 150(4):400-4. PubMed ID: 3144259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants.
    Peng Z; Lu Q; Verma DP
    Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.