BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6812529)

  • 1. Effects of growth temperature on transport and membrane viscosity in Streptococcus faecalis.
    Wilkins PO
    Arch Microbiol; 1982 Aug; 132(2):211-5. PubMed ID: 6812529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth temperature on membrane dynamics in a thermophilic cyanobacterium: a spin label study.
    Miller M; Pedersen JZ; Cox RP
    Biochim Biophys Acta; 1988 Sep; 943(3):501-10. PubMed ID: 2843232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of the fatty acid composition and membrane microviscosity in Salmonella typhimurium TA98.
    Hampton MJ; Floyd RA; Clark JB; Lancaster JH
    Chem Phys Lipids; 1980 Sep; 27(2):177-83. PubMed ID: 6250734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fatty acid supplementation on thermotropic behavior of membrane lipids and leucine transport in Saccharomyces cerevisiae.
    Basu J; Kundu M; Chakrabarti P
    Arch Biochem Biophys; 1986 Nov; 250(2):382-9. PubMed ID: 3535679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alanine transport by Chinese hamster ovary cells with altered phospholipid acyl chain composition.
    Ryan J; Simoni RD
    Biochim Biophys Acta; 1980 Jun; 598(3):606-15. PubMed ID: 6104513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Dictyostelium discoideum plasma membrane fluidity by electron spin resonance.
    Herring FG; Weeks G
    Biochim Biophys Acta; 1979 Mar; 552(1):66-77. PubMed ID: 219892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes.
    McMurchie EJ; Raison JK
    Biochim Biophys Acta; 1979 Jul; 554(2):364-74. PubMed ID: 226136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica.
    Abbas CA; Card GL
    Biochim Biophys Acta; 1980 Nov; 602(3):469-76. PubMed ID: 7437420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.
    Reizer J; Grossowicz N; Barenholz Y
    Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fluidity and fatty acid composition of phospholipids in erythrocyte membranes of patients with Huntington disease.
    Abood ME; Butler M
    J Neurosci Res; 1979; 4(3):183-7. PubMed ID: 157398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in lipid fluidity and fatty acid composition with altered culture temperature in Tetrahymena pyriformis-NT1.
    Connolly JG; Brown ID; Lee AG; Kerkut GA
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):287-92. PubMed ID: 2864170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity.
    Kameyama Y; Ohki K; Nozawa Y
    J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis.
    Rottem S; Markowitz O; Razin S
    Eur J Biochem; 1978 Apr; 85(2):445-50. PubMed ID: 206438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes.
    Yamauchi T; Ohki K; Maruyama H; Nozawa Y
    Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod.
    van Dooremalen C; Ellers J
    J Insect Physiol; 2010 Feb; 56(2):178-84. PubMed ID: 19835878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent changes in plasma-membrane lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated.
    Avery SV; Lloyd D; Harwood JL
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):811-6. PubMed ID: 8554525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of growth temperature on membrane fatty acid composition and susceptibility to cold shock of Bacillus amyloliquefaciens.
    Paton JC; McMurchie EJ; May BK; Elliott WH
    J Bacteriol; 1978 Sep; 135(3):754-9. PubMed ID: 690073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath).
    Jahnke LL
    FEMS Microbiol Lett; 1992 Jun; 72(3):209-12. PubMed ID: 11537858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin resonance studies of lipid fluidity changes in membranes of an uncoupler-resistant mutant of Escherichia coli.
    Herring FG; Krisman A; Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1985 Oct; 819(2):231-40. PubMed ID: 2994734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.