BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 6812627)

  • 1. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane potential in liposomes measured by the transmembrane distribution of 86Rb+, tetraphenylphosphonium or triphenylmethylphosphonium: effect of cholesterol in the lipid bilayer.
    Nakazato K; Murakami N; Konishi T; Hatano Y
    Biochim Biophys Acta; 1988 Dec; 946(1):143-50. PubMed ID: 3207727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proton electrochemical gradient in Escherichia coli cells.
    Padan E; Zilberstein D; Rottenberg H
    Eur J Biochem; 1976 Apr; 63(2):533-41. PubMed ID: 4325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4615-23. PubMed ID: 10903493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of membrane potential of Bacillus subtilis and Escherichia coli cells by the penetration ions methods].
    Grinius LL; Daugelabichius RIu; Al'kimavichius GA
    Biokhimiia; 1980 Sep; 45(9):1609-18. PubMed ID: 6166329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence.
    Arcangeli A; Olivotto M
    J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations.
    Rottenberg H
    J Membr Biol; 1984; 81(2):127-38. PubMed ID: 6492133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations.
    Ahmed I; Krishnamoorthy G
    Biochim Biophys Acta; 1990 May; 1024(2):298-306. PubMed ID: 1693858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of determining electrical potential gradient across mitochondrial membrane in perfused rat hearts.
    Wan B; Doumen C; Duszynski J; Salama G; LaNoue KF
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H445-52. PubMed ID: 8368347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetraphenylphosphonium ion is a true indicator of negative plasma-membrane potential in the yeast Rhodotorula glutinis. Experiments under osmotic stress and at low external pH values.
    Höfer M; Künemund A
    Biochem J; 1985 Feb; 225(3):815-9. PubMed ID: 4038875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donnan equilibrium and pH gradient in isolated tracheal apical membrane vesicles.
    Langridge-Smith JE; Dubinsky WP
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C417-20. PubMed ID: 4061628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation.
    Kuroki M; Kamo N; Kobatake Y; Okimasu E; Utsumi K
    Biochim Biophys Acta; 1982 Dec; 693(2):326-34. PubMed ID: 7159582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mode of action of the bacteriocin butyricin 7423. Effects on membrane potential and potassium-ion accumulation in Clostridium pasteurianum.
    Clarke DJ; Morley CD; Kell DB; Morris JG
    Eur J Biochem; 1982 Sep; 127(1):105-16. PubMed ID: 6216104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinction between changes in membrane potential and surface charge upon chemotactic stimulation of Escherichia coli.
    Eisenbach M; Margolin Y; Ciobotariu A; Rottenberg H
    Biophys J; 1984 Feb; 45(2):463-7. PubMed ID: 6365190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential manipulation in synaptic plasma membrane vesicles for studying neurotransmitter uptake and release.
    Gonçalves PP; Carvalho AP
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):1-12. PubMed ID: 9385041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of permeant ions demonstrates the presence of at least two distinct electrical gradients in bloodstream forms of Trypanosoma brucei.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1991 Dec; 202(2):411-20. PubMed ID: 1761044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.