These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6812634)

  • 1. Thermotropic 'two-stage' liquid crystalline equilibrium crystalline lipid phase separation in microsomal membranes.
    Funk J; Wunderlich F; Kreutz W
    Biochim Biophys Acta; 1982 Sep; 690(2):306-9. PubMed ID: 6812634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes.
    Dickens BF; Thompson GA
    Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-induced vertical shift of proteins in membranes.
    Funk J; Wunderlich F; Kreutz W
    J Mol Biol; 1982 Nov; 161(4):561-77. PubMed ID: 6818355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures.
    Martin CE; Foyt DC
    Biochemistry; 1978 Aug; 17(17):3587-91. PubMed ID: 99168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotropic fluid goes to ordered "discontinuous" phase separation in microsomal lipids of Tetrahymena. An X-ray diffraction study.
    Wunderlich F; Kreutz W; Mahler P; Ronai A; Heppeler G
    Biochemistry; 1978 May; 17(10):2005-10. PubMed ID: 418796
    [No Abstract]   [Full Text] [Related]  

  • 6. Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature.
    Dickens BF; Thompson GA
    Biochemistry; 1982 Jul; 21(15):3604-11. PubMed ID: 6810926
    [No Abstract]   [Full Text] [Related]  

  • 7. Thermotropic lipid clustering in tetrahymena membranes.
    Wunderlich F; Ronai A; Speth V; Seelig J; Blume A
    Biochemistry; 1975 Aug; 14(17):3730-5. PubMed ID: 169883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena.
    Nakayama H; Ohki K; Mitsui T; Nozawa Y
    Biochim Biophys Acta; 1984 Jan; 769(2):311-6. PubMed ID: 6320873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid molecular species alterations in Tetrahymena ciliary membranes following low-temperature acclimation.
    Ramesha CS; Dickens BF; Thompson GA
    Biochemistry; 1982 Jul; 21(15):3618-22. PubMed ID: 6810928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes.
    Dickens BF; Martin CE; King GP; Turner JS; Thompson GA
    Biochim Biophys Acta; 1980 May; 598(2):217-36. PubMed ID: 6769483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity.
    Kameyama Y; Ohki K; Nozawa Y
    J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes from Tetrahymena.
    Dickens BF; Thompson GA
    Biochemistry; 1980 Oct; 19(22):5029-37. PubMed ID: 6779861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An X-ray diffraction study on phase transition temperatures of various membranes isolated from Tetrahymena pyriformis cells grown at different temperatures.
    Nakayama H; Goto M; Ohki K; Mitsui T; Nozawa Y
    Biochim Biophys Acta; 1983 Apr; 730(1):17-24. PubMed ID: 6403032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of thermotropic lipid clustering in Tetrahymena nuclear membranes upon Ca2+/Mg2+-induced membrane contraction.
    Giese G; Fromme I; Wunderlich F
    Eur J Biochem; 1979 Apr; 95(2):275-85. PubMed ID: 222580
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes.
    Martin CE; Thompson GA
    Biochemistry; 1978 Aug; 17(17):3581-6. PubMed ID: 99167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new perspective on the mechanism of corpus luteum regression.
    Buhr MM; Carlson JC; Thompson JE
    Endocrinology; 1979 Dec; 105(6):1330-5. PubMed ID: 499076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric and spectroscopic studies of lipid thermotropic phase behavior in liver inner mitochondrial membranes from a mammalian hibernator.
    Pehowich DJ; Macdonald PM; McElhaney RN; Cossins AR; Wang LC
    Biochemistry; 1988 Jun; 27(13):4632-8. PubMed ID: 3167006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of food vacuolar membranes during endocytosis in Tetrahymena.
    Kitajima Y; Thompson GA
    J Cell Biol; 1977 Nov; 75(2 Pt 1):436-45. PubMed ID: 122537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes.
    Yamauchi T; Ohki K; Maruyama H; Nozawa Y
    Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on nuclear membranes and nucleo-cytoplasmic RNA-transport in Tetrahymena grown at different temperatures.
    Nägel WC; Wunderlich F
    J Membr Biol; 1977 Apr; 32(1-2):151-64. PubMed ID: 404429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.