BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6813321)

  • 1. Hexose-6-phosphate and 6-phosphogluconate dehydrogenases of rat liver microsomes. Involvement in NADPH and carbon dioxide generation in the luminal space of microsomal vesicles.
    Hino Y; Minakami S
    J Biochem; 1982 Aug; 92(2):547-57. PubMed ID: 6813321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsomal hexose-6-phosphate and 6-phosphogluconate dehydrogenases in extrahepatic tissues: human placenta and pig kidney cortex.
    Barash V; Erlich T; Bashan N
    Biochem Int; 1990; 20(2):267-74. PubMed ID: 2156506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The topology of phosphogluconate dehydrogenases in rat liver microsomes.
    Bublitz C; Lawler CA; Steavenson S
    Arch Biochem Biophys; 1987 Nov; 259(1):22-8. PubMed ID: 2825599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation of glucose dehydrogenase by p-chloromercuribenzoate.
    Bublitz C; Lawler CA
    Mol Cell Biochem; 1989 Apr; 86(2):101-6. PubMed ID: 2770707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that adrenal hexose-6-phosphate dehydrogenase can effect microsomal P450 cytochrome steroidogenic enzymes.
    Foster CA; Mick GJ; Wang X; McCormick K
    Biochim Biophys Acta; 2013 Sep; 1833(9):2039-44. PubMed ID: 23665046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible functional relationship between microsomal aromatic aldehyde-ketone reductase and hexose-6-phosphate dehydrogenase.
    Sawada H; Hayashibara M; Hara A; Nakayama T
    J Biochem; 1980 Mar; 87(3):985-8. PubMed ID: 6993453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes.
    Antonenkov VD
    Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase.
    Bublitz C; Lawler CA
    Biochem J; 1987 Jul; 245(1):263-7. PubMed ID: 2822015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manifold effects of palmitoylcarnitine on endoplasmic reticulum metabolism: 11β-hydroxysteroid dehydrogenase 1, flux through hexose-6-phosphate dehydrogenase and NADPH concentration.
    Wang X; Mick GJ; Maser E; McCormick K
    Biochem J; 2011 Jul; 437(1):109-15. PubMed ID: 21492096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintenance of luminal NADPH in the endoplasmic reticulum promotes the survival of human neutrophil granulocytes.
    Kardon T; Senesi S; Marcolongo P; Legeza B; Bánhegyi G; Mandl J; Fulceri R; Benedetti A
    FEBS Lett; 2008 Jun; 582(13):1809-15. PubMed ID: 18472006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsomal reductase for aromatic aldehydes and ketones in guinea pig liver. Purification, characterization, and functional relationship to hexose-6-phosphate dehydrogenase.
    Sawada H; Hara A; Hayashibara M; Nakayama T; Usui S; Saeki T
    J Biochem; 1981 Oct; 90(4):1077-85. PubMed ID: 7031045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible functional coupling of hexose-6-phosphate dehydrogenase to microsomal electron transport system in rat kidney and liver.
    Kodama T; Hori SH
    Biochim Biophys Acta; 1982 Apr; 715(2):151-61. PubMed ID: 7074135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of the NADPH/NADP+ ratio on the activities of hexose-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase.
    Oka K; Takahashi T; Hori SH
    Biochim Biophys Acta; 1981 Dec; 662(2):318-25. PubMed ID: 7317444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse liver microsomal hexose-6-phosphate dehydrogenase. NADPH generation and utilization in monooxygenation reactions.
    Kulkarni AP; Hodgson E
    Biochem Pharmacol; 1982 Mar; 31(6):1131-7. PubMed ID: 7082368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microsomal enzyme 17β-hydroxysteroid dehydrogenase 3 faces the cytoplasm and uses NADPH generated by glucose-6-phosphate dehydrogenase.
    Legeza B; Balázs Z; Nashev LG; Odermatt A
    Endocrinology; 2013 Jan; 154(1):205-13. PubMed ID: 23183177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramembraneous localization of rat liver microsomal hexose-6-phosphate dehydrogenase and membrane permeability to its substrates.
    Takahashi T; Hori SH
    Biochim Biophys Acta; 1978 Jun; 524(2):262-76. PubMed ID: 27221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortisol promotes endoplasmic glucose production via pyridine nucleotide redox.
    Wang Z; Mick GJ; Xie R; Wang X; Xie X; Li G; McCormick KL
    J Endocrinol; 2016 Apr; 229(1):25-36. PubMed ID: 26860459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for glucose-6-phosphate transport in rat liver microsomes.
    Gerin I; Van Schaftingen E
    FEBS Lett; 2002 Apr; 517(1-3):257-60. PubMed ID: 12062448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex.
    Corpas FJ; García-Salguero L; Barroso JB; Aranda F; Lupiáñez JA
    Mol Cell Biochem; 1995 Mar; 144(2):97-104. PubMed ID: 7623792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible involvement of NADPH requirement in regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenase levels in rat liver.
    Ayala A; Fabregat I; Machado A
    Mol Cell Biochem; 1990 Jun; 95(2):107-15. PubMed ID: 2195319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.