These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 6813321)
1. Hexose-6-phosphate and 6-phosphogluconate dehydrogenases of rat liver microsomes. Involvement in NADPH and carbon dioxide generation in the luminal space of microsomal vesicles. Hino Y; Minakami S J Biochem; 1982 Aug; 92(2):547-57. PubMed ID: 6813321 [TBL] [Abstract][Full Text] [Related]
2. Microsomal hexose-6-phosphate and 6-phosphogluconate dehydrogenases in extrahepatic tissues: human placenta and pig kidney cortex. Barash V; Erlich T; Bashan N Biochem Int; 1990; 20(2):267-74. PubMed ID: 2156506 [TBL] [Abstract][Full Text] [Related]
3. The topology of phosphogluconate dehydrogenases in rat liver microsomes. Bublitz C; Lawler CA; Steavenson S Arch Biochem Biophys; 1987 Nov; 259(1):22-8. PubMed ID: 2825599 [TBL] [Abstract][Full Text] [Related]
4. The activation of glucose dehydrogenase by p-chloromercuribenzoate. Bublitz C; Lawler CA Mol Cell Biochem; 1989 Apr; 86(2):101-6. PubMed ID: 2770707 [TBL] [Abstract][Full Text] [Related]
5. Evidence that adrenal hexose-6-phosphate dehydrogenase can effect microsomal P450 cytochrome steroidogenic enzymes. Foster CA; Mick GJ; Wang X; McCormick K Biochim Biophys Acta; 2013 Sep; 1833(9):2039-44. PubMed ID: 23665046 [TBL] [Abstract][Full Text] [Related]
6. A possible functional relationship between microsomal aromatic aldehyde-ketone reductase and hexose-6-phosphate dehydrogenase. Sawada H; Hayashibara M; Hara A; Nakayama T J Biochem; 1980 Mar; 87(3):985-8. PubMed ID: 6993453 [TBL] [Abstract][Full Text] [Related]
7. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes. Antonenkov VD Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047 [TBL] [Abstract][Full Text] [Related]
8. The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase. Bublitz C; Lawler CA Biochem J; 1987 Jul; 245(1):263-7. PubMed ID: 2822015 [TBL] [Abstract][Full Text] [Related]
9. Manifold effects of palmitoylcarnitine on endoplasmic reticulum metabolism: 11β-hydroxysteroid dehydrogenase 1, flux through hexose-6-phosphate dehydrogenase and NADPH concentration. Wang X; Mick GJ; Maser E; McCormick K Biochem J; 2011 Jul; 437(1):109-15. PubMed ID: 21492096 [TBL] [Abstract][Full Text] [Related]
10. Maintenance of luminal NADPH in the endoplasmic reticulum promotes the survival of human neutrophil granulocytes. Kardon T; Senesi S; Marcolongo P; Legeza B; Bánhegyi G; Mandl J; Fulceri R; Benedetti A FEBS Lett; 2008 Jun; 582(13):1809-15. PubMed ID: 18472006 [TBL] [Abstract][Full Text] [Related]
11. Microsomal reductase for aromatic aldehydes and ketones in guinea pig liver. Purification, characterization, and functional relationship to hexose-6-phosphate dehydrogenase. Sawada H; Hara A; Hayashibara M; Nakayama T; Usui S; Saeki T J Biochem; 1981 Oct; 90(4):1077-85. PubMed ID: 7031045 [TBL] [Abstract][Full Text] [Related]
12. Possible functional coupling of hexose-6-phosphate dehydrogenase to microsomal electron transport system in rat kidney and liver. Kodama T; Hori SH Biochim Biophys Acta; 1982 Apr; 715(2):151-61. PubMed ID: 7074135 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of the NADPH/NADP+ ratio on the activities of hexose-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase. Oka K; Takahashi T; Hori SH Biochim Biophys Acta; 1981 Dec; 662(2):318-25. PubMed ID: 7317444 [TBL] [Abstract][Full Text] [Related]
14. Mouse liver microsomal hexose-6-phosphate dehydrogenase. NADPH generation and utilization in monooxygenation reactions. Kulkarni AP; Hodgson E Biochem Pharmacol; 1982 Mar; 31(6):1131-7. PubMed ID: 7082368 [TBL] [Abstract][Full Text] [Related]
15. The microsomal enzyme 17β-hydroxysteroid dehydrogenase 3 faces the cytoplasm and uses NADPH generated by glucose-6-phosphate dehydrogenase. Legeza B; Balázs Z; Nashev LG; Odermatt A Endocrinology; 2013 Jan; 154(1):205-13. PubMed ID: 23183177 [TBL] [Abstract][Full Text] [Related]
16. Intramembraneous localization of rat liver microsomal hexose-6-phosphate dehydrogenase and membrane permeability to its substrates. Takahashi T; Hori SH Biochim Biophys Acta; 1978 Jun; 524(2):262-76. PubMed ID: 27221 [TBL] [Abstract][Full Text] [Related]
17. Cortisol promotes endoplasmic glucose production via pyridine nucleotide redox. Wang Z; Mick GJ; Xie R; Wang X; Xie X; Li G; McCormick KL J Endocrinol; 2016 Apr; 229(1):25-36. PubMed ID: 26860459 [TBL] [Abstract][Full Text] [Related]
18. Evidence for glucose-6-phosphate transport in rat liver microsomes. Gerin I; Van Schaftingen E FEBS Lett; 2002 Apr; 517(1-3):257-60. PubMed ID: 12062448 [TBL] [Abstract][Full Text] [Related]
19. Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex. Corpas FJ; García-Salguero L; Barroso JB; Aranda F; Lupiáñez JA Mol Cell Biochem; 1995 Mar; 144(2):97-104. PubMed ID: 7623792 [TBL] [Abstract][Full Text] [Related]
20. Possible involvement of NADPH requirement in regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenase levels in rat liver. Ayala A; Fabregat I; Machado A Mol Cell Biochem; 1990 Jun; 95(2):107-15. PubMed ID: 2195319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]