These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6813906)

  • 1. The limitations of current neutron therapy equipment.
    Williams JR
    Radiography; 1982 Aug; 48(572):162-9. PubMed ID: 6813906
    [No Abstract]   [Full Text] [Related]  

  • 2. Treatment planning at the Amsterdam d + T fast neutron therapy facility.
    Mijnheer BJ; Battermann JJ; van der Laarse R
    Strahlentherapie Sonderb; 1981; 77():102-10. PubMed ID: 6820982
    [No Abstract]   [Full Text] [Related]  

  • 3. A design study of an accelerator-based epithermal neutron source for boron neutron capture therapy.
    Wang CK; Blue TE; Gahbauer RA
    Strahlenther Onkol; 1989; 165(2-3):75-8. PubMed ID: 2494748
    [No Abstract]   [Full Text] [Related]  

  • 4. The present status of neutron therapy.
    Scherer E; Schmitt G
    Strahlentherapie; 1984 Dec; 160(12):741-4. PubMed ID: 6440318
    [No Abstract]   [Full Text] [Related]  

  • 5. Neutron dose rate evaluation for medical linear accelerators.
    Facure A; Falcão RC; Da Silva AX; Crispim VR
    Radiat Prot Dosimetry; 2004; 111(1):101-3. PubMed ID: 15367778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Present status of the treatment planning for d(50)-Be neutron beams and mixed schedules at "Cyclone".
    Richard F; Meulders JP; Vynckier S; Octave-Prignot M; Possoz A; Wambersie A
    Strahlentherapie Sonderb; 1981; 77():178-84. PubMed ID: 6820995
    [No Abstract]   [Full Text] [Related]  

  • 7. An overview: radiation sources, beam quality, dosimetry and spectroscopy in neutron capture therapy.
    Kanda K
    Strahlenther Onkol; 1989; 165(2-3):67-9. PubMed ID: 2494745
    [No Abstract]   [Full Text] [Related]  

  • 8. Neutron therapy planning: principles and practice in Edinburgh.
    Duncan W; Williams JR; Redpath AT; Arnott SJ
    Strahlentherapie Sonderb; 1981; 77():156-61. PubMed ID: 6820991
    [No Abstract]   [Full Text] [Related]  

  • 9. Shielding design for a laser-accelerated proton therapy system.
    Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM
    Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Status report of the Cleveland Clinic Foundation National Aeronautics and Space Administration Neutron Therapy Center.
    Turco RF; Gahbauer R; Rodriguez-Antunez A; Horton JL; Roberts WK; Blue JW
    Strahlentherapie Sonderb; 1981; 77():150-5. PubMed ID: 6820990
    [No Abstract]   [Full Text] [Related]  

  • 11. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials.
    Price RA
    Radiat Prot Dosimetry; 2005; 115(1-4):386-90. PubMed ID: 16381751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment planning for 15 MeV neutron therapy.
    Williams PC; Greene D
    Strahlentherapie Sonderb; 1981; 77():123-7. PubMed ID: 6820986
    [No Abstract]   [Full Text] [Related]  

  • 13. [Bases of a procedure for optimizing dose distribution in radiation therapy with ultrahard bremsstrahlung (author's transl)].
    Stecher M
    Radiobiol Radiother (Berl); 1979 Aug; 20(4):582-8. PubMed ID: 118480
    [No Abstract]   [Full Text] [Related]  

  • 14. Treatment planning system for fast neutron therapy at NIRS Hospital.
    Tsunemoto H; Murakami Y; Nakamura Y; Endo S; Maruyama T
    Strahlentherapie Sonderb; 1981; 77():208-13. PubMed ID: 6820999
    [No Abstract]   [Full Text] [Related]  

  • 15. Design of an accelerator-based neutron source for neutron capture therapy.
    Terlizzi R; Colonna N; Colangelo P; Maiorana A; Marrone S; Rainò A; Tagliente G; Variale V
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S292-5. PubMed ID: 19406649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A randomised comparison of photons and 15 MeV neutrons for the treatment of carcinoma of the bladder.
    Pointon RS; Read G; Greene D
    Br J Radiol; 1985 Mar; 58(687):219-24. PubMed ID: 3933604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Assessment of the basic parameters of a neutron beam with a mean energy of several hundred MeV].
    Dzhelepov VP; Savchenko OV; Fadeeva TA; Shmakova NL; Cherevatenko EP
    Med Radiol (Mosk); 1980 Mar; 25(3):56-9. PubMed ID: 6768952
    [No Abstract]   [Full Text] [Related]  

  • 18. Recent development of the Stuttgart program system for treatment planning in neutron therapy.
    Hehn G; Pfister G; Friedlein HP; Kicherer G
    Strahlentherapie Sonderb; 1981; 77():72-82. PubMed ID: 6821006
    [No Abstract]   [Full Text] [Related]  

  • 19. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Building plan for enlarging the high voltage therapy department to house the Soviet LUE-15 M 1 linear accelerator].
    Salewski D; Eichhorn M; Glaser FH; Grimm D; Heider KM; Schuchardt V
    Radiobiol Radiother (Berl); 1982; 23(5):577-82. PubMed ID: 6818610
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.