These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Thiamine pyrophosphatase activity in the Golgi apparatus of calcitonin-treated osteoclasts. Noda K; Nakamura Y; Wakimoto Y; Tanaka T; Kuwahara Y J Electron Microsc (Tokyo); 1991 Dec; 40(6):399-402. PubMed ID: 1806652 [TBL] [Abstract][Full Text] [Related]
7. Carbonic anhydrase activity in isolated osteoclasts. Gay CV; Ito MB; Schraer H Metab Bone Dis Relat Res; 1983-1984; 5(1):33-9. PubMed ID: 6423928 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the functional stages of osteoclasts by enzyme histochemistry and electron microscopy. Fukushima O; Bekker PJ; Gay CV Anat Rec; 1991 Nov; 231(3):298-315. PubMed ID: 1662472 [TBL] [Abstract][Full Text] [Related]
9. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane. Akisaka T; Yoshida H; Suzuki R J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216 [TBL] [Abstract][Full Text] [Related]
10. Characterization of isolated and cultured chick osteoclasts: the effects of acetazolamide, calcitonin, and parathyroid hormone on acid production. Hunter SJ; Schraer H; Gay CV J Bone Miner Res; 1988 Jun; 3(3):297-303. PubMed ID: 3145673 [TBL] [Abstract][Full Text] [Related]
11. Phosphatidylinositol-3 kinase is involved in ruffled border formation in osteoclasts. Nakamura I; Sasaki T; Tanaka S; Takahashi N; Jimi E; Kurokawa T; Kita Y; Ihara S; Suda T; Fukui Y J Cell Physiol; 1997 Aug; 172(2):230-9. PubMed ID: 9258344 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructural localization of tartrate-resistant, purple acid phosphatase in rat osteoclasts by histochemistry and immunocytochemistry. Clark SA; Ambrose WW; Anderson TR; Terrell RS; Toverud SU J Bone Miner Res; 1989 Jun; 4(3):399-405. PubMed ID: 2763875 [TBL] [Abstract][Full Text] [Related]
13. The occurrence of mitochondrial variations including large mitochondria in osteoclasts following calcitonin treatment. Noda K; Kuwahara Y J Electron Microsc (Tokyo); 1993 Aug; 42(4):218-26. PubMed ID: 8254279 [TBL] [Abstract][Full Text] [Related]
14. Histomorphometric identification of carbonic anhydrase in fetal rat bone embedded in glycolmethacrylate. Marie PJ; Hott M J Histochem Cytochem; 1987 Feb; 35(2):245-50. PubMed ID: 3098835 [TBL] [Abstract][Full Text] [Related]
15. Current studies on the location and function of carbonic anhydrase in osteoclasts. Gay CV; Schraer H; Anderson RE; Cao H Ann N Y Acad Sci; 1984; 429():473-8. PubMed ID: 6430184 [No Abstract] [Full Text] [Related]
16. Ultrastructural localization of carbonic anhydrase in lysosomes. Rikihisa Y Anat Rec; 1985 Jan; 211(1):1-8. PubMed ID: 3920930 [TBL] [Abstract][Full Text] [Related]
17. Carbonic anhydrase II in rat acid secreting cells: comparison of osteoclasts with gastric parietal cells and kidney intercalated cells. Karhukorpi EK Acta Histochem; 1991; 90(1):11-20. PubMed ID: 1904672 [TBL] [Abstract][Full Text] [Related]
18. Histochemical and autoradiographic studies on elcatonin internalization and intracellular movement in osteoclasts. Ikegame M; Ejiri S; Ozawa H J Bone Miner Res; 1994 Jan; 9(1):25-37. PubMed ID: 8154307 [TBL] [Abstract][Full Text] [Related]
19. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks. Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853 [TBL] [Abstract][Full Text] [Related]
20. High active isoenzyme of carbonic anhydrase in rat calvaria osteoclasts. Immunohistochemical study. Väänänen HK; Parvinen EK Histochemistry; 1983; 78(4):481-5. PubMed ID: 6413462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]