BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 6816319)

  • 1. Effect of substrate concentration on the cometabolism of m-chlorobenzoate by Pseudomonas fluorescens.
    Johnson LM; Williams FD
    Bull Environ Contam Toxicol; 1982 Oct; 29(4):447-54. PubMed ID: 6816319
    [No Abstract]   [Full Text] [Related]  

  • 2. An attempt to control the polychlorocatechol pigment production during 3-chlorobenzoate aerobic co-metabolism in growing-cell batch culture.
    Fava F; Di Gioia D; Bignami A; Marchetti L
    Chemosphere; 1994 Jul; 29(1):39-46. PubMed ID: 8044632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis and cytoplasmic accumulation of a chlorinated catechol pigment during 3-chlorobenzoate aerobic co-metabolism in Pseudomonas fluorescens.
    Fava F; Di Gioia D; Romagnoli C; Marchetti L; Mares D
    Arch Microbiol; 1993; 160(5):350-7. PubMed ID: 8257280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of chlorocatechol metabolism in natural and constructed chlorobenzoate and chlorobiphenyl degraders.
    Brenner V; Rucká L; Totevová S; Tømeraas K; Demnerová K
    J Appl Microbiol; 2004; 96(3):430-6. PubMed ID: 14962122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. THE METABOLISM OF HALOGEN-SUBSTITUTED BENZOIC ACIDS BY PSEUDOMONAS FLUORESCENS.
    HUGHES DE
    Biochem J; 1965 Jul; 96(1):181-8. PubMed ID: 14343128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of chlorobenzoates by microbial populations in sewage.
    DiGeronimo MJ; Nikaido M; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):619-25. PubMed ID: 453835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenobiotic degradation in industrial sewage: haloaromatics as target substrates.
    Knackmuss HJ
    Biochem Soc Symp; 1983; 48():173-90. PubMed ID: 6400482
    [No Abstract]   [Full Text] [Related]  

  • 8. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls.
    Arensdorf JJ; Focht DD
    Appl Environ Microbiol; 1994 Aug; 60(8):2884-9. PubMed ID: 7521996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-metabolism of m-chlorobenzoate by natural microbial populations grown under co-substrate enrichment conditions.
    Horvath RS; Dotzlaf JE; Kreger R
    Bull Environ Contam Toxicol; 1975 Mar; 13(3):357-61. PubMed ID: 1125465
    [No Abstract]   [Full Text] [Related]  

  • 10. Pseudomonas fluorescens KKL101, a benzoic acid degrader in a mixed culture that degrades biphenyl and polychlorinated biphenyls.
    Kikuchi Y; Nagata Y; Ohtsubo Y; Koana T; Takagi M
    Biosci Biotechnol Biochem; 1995 Dec; 59(12):2303-4. PubMed ID: 8611753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250.
    Engesser KH; Schulte P
    FEMS Microbiol Lett; 1989 Jul; 51(1):143-7. PubMed ID: 2777062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylation of benzoate and its chlorinated derivatives in Aspergillus niger.
    Sahasrabudhe SR; Modi VV
    Biochem Int; 1985 Apr; 10(4):525-9. PubMed ID: 4026866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113.
    Power B; Liu X; Germaine KJ; Ryan D; Brazil D; Dowling DN
    J Appl Microbiol; 2011 May; 110(5):1351-8. PubMed ID: 21395945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemotaxis of Pseudomonas putida toward chlorinated benzoates.
    Harwood CS; Parales RE; Dispensa M
    Appl Environ Microbiol; 1990 May; 56(5):1501-3. PubMed ID: 2339899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from pseudomonas sp. CBS3: an ATP/coenzyme A dependent reaction.
    Löffler F; Müller R; Lingens F
    Biochem Biophys Res Commun; 1991 May; 176(3):1106-11. PubMed ID: 2039495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in the ability of Pseudomonas sp. strain B13 cultures to utilize meta-chlorobenzoate is associated with tandem amplification and deamplification of DNA.
    Rangnekar VM
    J Bacteriol; 1988 Apr; 170(4):1907-12. PubMed ID: 2832387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fluorene cometabolism by Rhodococcus rhodochrous and Pseudomonas fluorescens].
    Baboshin MA; Finkel'shteĭn ZI; Golovleva LA
    Mikrobiologiia; 2003; 72(2):194-8. PubMed ID: 12751243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of 3-chlorobenzoate by a Pseudomonas (diff) spp.
    Vora KA; Modi VV
    Indian J Exp Biol; 1989 Nov; 27(11):967-71. PubMed ID: 2620936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate.
    Romanov V; Hausinger RP
    J Bacteriol; 1994 Jun; 176(11):3368-74. PubMed ID: 8195093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols.
    Liu S; Ogawa N; Miyashita K
    Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.