These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6816676)

  • 1. Chromosome interactions in Drosophila melanogaster. II. Total fitness.
    Seager RD; Ayala FJ; Marks RW
    Genetics; 1982 Nov; 102(3):485-502. PubMed ID: 6816676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome interactions in Drosophila melanogaster. I. Viability studies.
    Seager RD; Ayala FJ
    Genetics; 1982 Nov; 102(3):467-83. PubMed ID: 6816675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic load in natural populations: is it compatible with the hypothesis that many polymorphisms are maintained by natural selection?
    Tracey ML; Ayala FJ
    Genetics; 1974 Jul; 77(3):569-89. PubMed ID: 4213125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation for total fitness in Drosophila melanogaster: complex yet replicable patterns.
    Gardner MP; Fowler K; Barton NH; Partridge L
    Genetics; 2005 Mar; 169(3):1553-71. PubMed ID: 15545656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic structure of natural populations of Drosophila melanogaster. XX. Comparison of genotype-environment interaction in viability between a northern and a southern population.
    Takano T; Kusakabe S; Mukai T
    Genetics; 1987 Oct; 117(2):245-54. PubMed ID: 3117620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic variation and genetic load due to the male reproductive component of fitness in Drosophila.
    Brittnacher JG
    Genetics; 1981; 97(3-4):719-30. PubMed ID: 6795085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The estimation of epistasis in components of fitness in experimental populations of Drosophila melanogaster I. A two-stage maximum likelihood model.
    Clark AG; Feldman MW; Christiansen FB
    Heredity (Edinb); 1981 Jun; 46(3):321-46. PubMed ID: 6792162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fitness effects of EMS-induced mutations on the X chromosome of Drosophila melanogaster. I. Viability effects and heterozygous fitness effects.
    Mitchell JA
    Genetics; 1977 Dec; 87(4):763-74. PubMed ID: 414960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitness of third chromosome homozygotes in Drosophila melanogaster.
    Sved JA
    Genet Res; 1975 Apr; 25(2):197-200. PubMed ID: 810388
    [No Abstract]   [Full Text] [Related]  

  • 10. Measuring fitness by means of balancer chromosomes.
    Barton NH; Partridge L
    Genet Res; 2000 Jun; 75(3):297-313. PubMed ID: 10893866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viabilities of third chromosomes of Drosophila pseudoobscura differing in relative competitive fitness.
    Strickberger MW
    Genetics; 1972 Dec; 72(4):679-89. PubMed ID: 4652876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster.
    Latter BD; Mulley JC; Reid D; Pascoe L
    Genetics; 1995 Jan; 139(1):287-97. PubMed ID: 7705630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A measure of the within-chromosome synergistic epistasis for Drosophila viability.
    Rosa JM; Camacho S; García-Dorado A
    J Evol Biol; 2005 Jul; 18(4):1130-7. PubMed ID: 16033587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic basis for remating in Drosophila melanogaster. IV. A chromosome substitution analysis.
    Fukui HH; Gromko MH
    Behav Genet; 1991 Mar; 21(2):169-82. PubMed ID: 1904714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterozygous effects on fitness of EMS-treated chromosomes in Drosophila melanogaster.
    Simmons MJ; Sheldon EW; Crow JF
    Genetics; 1978 Mar; 88(3):575-90. PubMed ID: 205482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parental age dependent changes as a source of genetic variation in Drosophila melanogaster.
    Marinković D; Bajraktari I
    Genetica; 1988 Sep; 77(2):113-21. PubMed ID: 3145904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing variation in egg-to-adult viability in experimental populations of Drosophila melanogaster.
    Wallace B
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2117-21. PubMed ID: 2494660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster.
    Latter BD
    Genetics; 1998 Mar; 148(3):1143-58. PubMed ID: 9539431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal polymorphism and patterns of viability in natural populations of Drosophila melanogaster from cellar and vineyard.
    Taberner A; González A
    Heredity (Edinb); 1991 Dec; 67 ( Pt 3)():307-16. PubMed ID: 1774189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fitness of wild-caught Drosophila melanogaster females: allozyme variants of GPDH, ADH, PGM, and EST.
    Ochando MD; Ayala FJ
    Genetica; 1999; 105(1):7-18. PubMed ID: 10483089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.