These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6816857)

  • 1. Rats highly susceptible to experimental autoimmune encephalomyelitis obtained by crossing rats from strains with low susceptibility.
    Källén B
    J Immunogenet; 1982 Oct; 9(5):335-42. PubMed ID: 6816857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental autoimmune encephalomyelitis in hybrids between Lewis and Brown Norway rats.
    Källén B; Lögdberg L
    Immunobiology; 1982; 162(1):86-93. PubMed ID: 6809602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between susceptibility to experimental allergic encephalomyelitis and the major histocompatibility system in congenic rat strains.
    Günther E; Odenthal H; Wechsler W
    Clin Exp Immunol; 1978 Jun; 32(3):429-34. PubMed ID: 99279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat.
    Mason D; MacPhee I; Antoni F
    Immunology; 1990 May; 70(1):1-5. PubMed ID: 2354853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of inflammation, cytokine mRNA expression and disease course of relapsing experimental autoimmune encephalomyelitis in DA rats.
    Lorentzen JC; Andersson M; Issazadeh S; Dahlman I; Luthman H; Weissert R; Olsson T
    J Neuroimmunol; 1997 Dec; 80(1-2):31-7. PubMed ID: 9413257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic control of the development of experimental allergic encephalomyelitis in rats. Separation of MHC and non-MHC gene effects.
    Happ MP; Wettstein P; Dietzschold B; Heber-Katz E
    J Immunol; 1988 Sep; 141(5):1489-94. PubMed ID: 2457618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic control of susceptibility to experimental allergic encephalomyelitis in rats.
    Gasser DL; Newlin CM; Palm J; Gonatas NK
    Science; 1973 Aug; 181(4102):872-3. PubMed ID: 4125048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis.
    Massa PT; ter Meulen V; Fontana A
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4219-23. PubMed ID: 3495802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linkage of severity of experimental allergic encephalomyelitis to the rat major histocompatibility locus.
    Moore MJ; Singer DE; Williams RM
    J Immunol; 1980 Apr; 124(4):1815-20. PubMed ID: 6767774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the "resistant" Brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response.
    Stefferl A; Brehm U; Storch M; Lambracht-Washington D; Bourquin C; Wonigeit K; Lassmann H; Linington C
    J Immunol; 1999 Jul; 163(1):40-9. PubMed ID: 10384097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Bordetella pertussis vaccine on experimental autoimmune encephalomyelitis in rats.
    Källén B; Nilsson O
    Int Arch Allergy Appl Immunol; 1986; 80(1):95-9. PubMed ID: 3485580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains.
    Chung IY; Norris JG; Benveniste EN
    J Exp Med; 1991 Apr; 173(4):801-11. PubMed ID: 1901078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limiting-dilution analysis of the frequency of myelin basic protein-reactive T cells in Lewis, PVG/c and BN rats. Implication for susceptibility to autoimmune encephalomyelitis.
    Matsumoto Y; Kawai K; Tomita Y; Fujiwara M
    Immunology; 1990 Feb; 69(2):215-21. PubMed ID: 1689693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Appearance of rats sensitive to experimental autoimmune encephalomyelitis in a previously resistant strain.
    Källén B; Nilsson O
    Exp Clin Immunogenet; 1988; 5(4):213-7. PubMed ID: 3272819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras.
    Pelfrey CM; Waxman FJ; Whitacre CC
    Cell Immunol; 1989 Sep; 122(2):504-16. PubMed ID: 2527617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cyclophosphamide pretreatment on autoimmune encephalomyelitis in rats.
    Källén B; Dohlsten M; Klementsson H
    Acta Neurol Scand; 1986 Apr; 73(4):338-44. PubMed ID: 3727911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic analysis of susceptibility to experimental allergic encephalomyelitis in guinea-pigs.
    Raskin NH; Arnon R
    J Immunogenet; 1981 Apr; 8(2):107-12. PubMed ID: 6164734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disparate MHC class II haplotypes in myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalomyelitis.
    Muhallab S; Dahlman I; Wallström E
    J Neuroimmunol; 2005 Apr; 161(1-2):155-61. PubMed ID: 15748954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide is a potential down-regulating molecule in autoimmune disease: inhibition of nitric oxide production renders PVG rats highly susceptible to EAE.
    Cowden WB; Cullen FA; Staykova MA; Willenborg DO
    J Neuroimmunol; 1998 Aug; 88(1-2):1-8. PubMed ID: 9688317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of antigen absorption in the resistance of brown-Norway rats to experimental allergic encephalomyelitis.
    Levine S; Saltzman A
    Immunol Lett; 1988 Oct; 19(2):103-8. PubMed ID: 2466773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.