These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 6818048)

  • 41. Voltage clamp effects on bacterial chemotaxis.
    Margolin Y; Eisenbach M
    J Bacteriol; 1984 Aug; 159(2):605-10. PubMed ID: 6430873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The decrease of guanine nucleotides initiates sporulation of Bacillus subtilis.
    Lopez JM; Marks CL; Freese E
    Biochim Biophys Acta; 1979 Oct; 587(2):238-52. PubMed ID: 114234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Life cycle and spore resistance of spore-forming Bacillus atrophaeus.
    Sella SR; Vandenberghe LP; Soccol CR
    Microbiol Res; 2014 Dec; 169(12):931-9. PubMed ID: 24880805
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Injury and repair in biocide-treated spores of Bacillus subtilis.
    Williams ND; Russell AD
    FEMS Microbiol Lett; 1993 Jan; 106(2):183-6. PubMed ID: 8384138
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Maintaining the transcription factor SpoIIID level late during sporulation causes spore defects in Bacillus subtilis.
    Wang L; Perpich J; Driks A; Kroos L
    J Bacteriol; 2007 Oct; 189(20):7302-9. PubMed ID: 17693499
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic analysis of SecA-SecY interaction required for spore development in Bacillus subtilis.
    Kobayashi H; Ohashi Y; Nanamiya H; Asai K; Kawamura F
    FEMS Microbiol Lett; 2000 Mar; 184(2):285-9. PubMed ID: 10713435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis].
    Lu Z; Zhou Y; Zhang X; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2015 Nov; 31(11):1543-52. PubMed ID: 26939438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively.
    Ikeda M; Sato T; Wachi M; Jung HK; Ishino F; Kobayashi Y; Matsuhashi M
    J Bacteriol; 1989 Nov; 171(11):6375-8. PubMed ID: 2509435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphate starvation induces the sporulation killing factor of Bacillus subtilis.
    Allenby NE; Watts CA; Homuth G; PrĂ¡gai Z; Wipat A; Ward AC; Harwood CR
    J Bacteriol; 2006 Jul; 188(14):5299-303. PubMed ID: 16816204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytological analysis of the mother cell death process during sporulation in Bacillus subtilis.
    Hosoya S; Lu Z; Ozaki Y; Takeuchi M; Sato T
    J Bacteriol; 2007 Mar; 189(6):2561-5. PubMed ID: 17209033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space.
    Wang T; Wu J; Qi J; Hao L; Yi Y; Zhang Z
    Appl Environ Microbiol; 2016 May; 82(10):3061-3069. PubMed ID: 26969707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sporulation of Bacillus subtilis.
    Piggot PJ; Hilbert DW
    Curr Opin Microbiol; 2004 Dec; 7(6):579-86. PubMed ID: 15556029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of endospore formation in Bacillus subtilis.
    Errington J
    Nat Rev Microbiol; 2003 Nov; 1(2):117-26. PubMed ID: 15035041
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha/beta-type small acid-soluble proteins.
    Setlow B; Atluri S; Kitchel R; Koziol-Dube K; Setlow P
    J Bacteriol; 2006 Jun; 188(11):3740-7. PubMed ID: 16707666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbiology. Cannibals defy starvation and avoid sporulation.
    Engelberg-Kulka H; Hazan R
    Science; 2003 Jul; 301(5632):467-8. PubMed ID: 12881556
    [No Abstract]   [Full Text] [Related]  

  • 56. Spore formation in Bacillus subtilis.
    Yudkin M
    Sci Prog; 1993-1994; 77 ( Pt 1-2)():113-30. PubMed ID: 7801090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of natto with germination-defective mutants of Bacillus subtilis (natto).
    Mitsui N; Murasawa H; Sekiguchi J
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):741-8. PubMed ID: 19205688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional homology of chemotactic methylesterases from Bacillus subtilis and Escherichia coli.
    Nettleton DO; Ordal GW
    J Bacteriol; 1989 Jan; 171(1):120-3. PubMed ID: 2492493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Independence of proline chemotaxis and transport in Bacillus subtilis.
    Ordal GW; Villani DP; Nicholas RA; Hamel FG
    J Biol Chem; 1978 Jul; 253(14):4916-9. PubMed ID: 97283
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel aspects of chemotactic sensory transduction in Bacillus subtilis.
    Carpenter PB; Hanlon DW; Kirsch ML; Ordal GW
    Res Microbiol; 1994; 145(5-6):413-9. PubMed ID: 7855427
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.