These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6818437)

  • 61. Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B.
    Cui CZ; Zeng C; Wan X; Chen D; Zhang JY; Shen P
    J Microbiol Biotechnol; 2008 Jan; 18(1):63-6. PubMed ID: 18239418
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil.
    Zhang Q; Wang B; Cao Z; Yu Y
    J Hazard Mater; 2012 Jun; 221-222():178-84. PubMed ID: 22560241
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Involvement of chromosomally-encoded genes in malathion utilization by Pseudomonas aeruginosa AA112.
    Abo-Amer AE
    Acta Microbiol Immunol Hung; 2007 Sep; 54(3):261-77. PubMed ID: 17896475
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Microbial breakdown of stearox-6 and a study of the genetic determination of the nature of the degradative activity].
    Udod VM; Turkovskaia OV; Shub GM; Shenderov BA; Vengzhen GS
    Mikrobiol Zh (1978); 1987; 49(3):30-3. PubMed ID: 3150493
    [No Abstract]   [Full Text] [Related]  

  • 65. [Chemotactic reactions of a paraffin-oxidizing strain of Pseudomonas aeruginosa].
    Koronelli TV; Komarova TI
    Mikrobiologiia; 1982; 51(4):689-91. PubMed ID: 6815433
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Growth of genetically engineered Pseudomonas aeruginosa and Pseudomonas putida in soil and rhizosphere.
    Yeung KH; Schell MA; Hartel PG
    Appl Environ Microbiol; 1989 Dec; 55(12):3243-6. PubMed ID: 2515805
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plasmid control of the Pseudomonas aeruginosa and Pseudomonas putida phenotypes and of linalool and p-cymene oxidation.
    de Smet MJ; Friedman MB; Gunsalus IC
    J Bacteriol; 1989 Sep; 171(9):5155-61. PubMed ID: 2504698
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microbial degradation of insecticides in flooded soil and in anaerobic cultures.
    Sethunathan N
    Residue Rev; 1973; 47():143-65. PubMed ID: 4127764
    [No Abstract]   [Full Text] [Related]  

  • 69. Microbial degradation of quinoline and methylquinolines.
    Aislabie J; Bej AK; Hurst H; Rothenburger S; Atlas RM
    Appl Environ Microbiol; 1990 Feb; 56(2):345-51. PubMed ID: 2106283
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relationship between some chlorinated hydrocarbon insecticides and lactic culture organisms in milk.
    Kim SC; Harmon LG
    J Dairy Sci; 1970 Feb; 53(2):155-60. PubMed ID: 5467064
    [No Abstract]   [Full Text] [Related]  

  • 71. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100.
    Hayatsu M; Hirano M; Tokuda S
    Appl Environ Microbiol; 2000 Apr; 66(4):1737-40. PubMed ID: 10742273
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Long-term DDT pollution in tropical soils: effect of DDT and degradation products on soil microbial activities leading to soil fertility.
    Mitra J; Raghu K
    Bull Environ Contam Toxicol; 1998 Apr; 60(4):585-91. PubMed ID: 9557196
    [No Abstract]   [Full Text] [Related]  

  • 73. The degradation of parathion and DDT in aqueous systems containing organic additives.
    Sharom MS; Miles JR
    J Environ Sci Health B; 1981; 16(6):703-11. PubMed ID: 7338594
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Degradation of DDT to phenylacetic acid by a culture of Psuedomonas sp. 640x].
    Skriabin GK; Golovleva LA; Ziakun AM; Pertsova RN; Shurukhin IuV
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1212-5. PubMed ID: 590085
    [No Abstract]   [Full Text] [Related]  

  • 75. Degradation of carbamate insectides in soil.
    Heywood DL
    Environ Qual Saf; 1975; 4():128-33. PubMed ID: 811462
    [No Abstract]   [Full Text] [Related]  

  • 76. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution.
    Prijambada ID; Negoro S; Yomo T; Urabe I
    Appl Environ Microbiol; 1995 May; 61(5):2020-2. PubMed ID: 7646041
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbial degradation of polyethylene glycols.
    Haines JR; Alexander M
    Appl Microbiol; 1975 May; 29(5):621-5. PubMed ID: 807161
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of chemical structure on the biodegradability of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT).
    Subba-Rao RV; Alexander M
    J Agric Food Chem; 1977; 25(2):327-9. PubMed ID: 838968
    [No Abstract]   [Full Text] [Related]  

  • 79. Biodegradation of chlorinated organic compounds by white-Rot fungi.
    Arisoy M
    Bull Environ Contam Toxicol; 1998 Jun; 60(6):872-6. PubMed ID: 9606263
    [No Abstract]   [Full Text] [Related]  

  • 80. Accelerated tetramethylthiuram disulfide (TMTD) degradation in soil by inoculation with TMTD-utilizing bacteria.
    Shirkot CK; Gupta KG
    Bull Environ Contam Toxicol; 1985 Sep; 35(3):354-61. PubMed ID: 3929864
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.