BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 6818799)

  • 21. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.
    Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS
    Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.
    Mommer L; Pons TL; Visser EJ
    J Exp Bot; 2006; 57(2):283-90. PubMed ID: 16291797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationships between quantum yield for CO2 assimilation, activity of key enzymes and CO2 leakiness in Amaranthus cruentus, a C4 dicot, grown in high or low light.
    Tazoe Y; Hanba YT; Furumoto T; Noguchi K; Terashima I
    Plant Cell Physiol; 2008 Jan; 49(1):19-29. PubMed ID: 18032398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation.
    Araya T; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Jan; 31(1):50-61. PubMed ID: 17944816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biological value of the proteins of rye grown on reclaimed peat bogs].
    Chakhovskiĭ IA; Novikov PG
    Gig Sanit; 1974 Jan; (1):93-4. PubMed ID: 4279842
    [No Abstract]   [Full Text] [Related]  

  • 26. The formation of allergens during the development of rye pollen (secale cereale).
    Linskens HF; van der Werken P; Jorde W
    Allergol Immunopathol (Madr); 1980; 8(1):35-42. PubMed ID: 7405759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.
    Terashima I; Hanba YT; Tazoe Y; Vyas P; Yano S
    J Exp Bot; 2006; 57(2):343-54. PubMed ID: 16356943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.
    Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P
    J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthesis and respiration. II. Effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and of partial pressure of oxygen on the rates of carbon dioxide exchange in light and in darkness of detached wheat leaves.
    Poskuta J
    Experientia; 1968 Apr; 24(4):344-5. PubMed ID: 5705182
    [No Abstract]   [Full Text] [Related]  

  • 31. The effect of O2 and CO 2 concentration on photosynthesis and glycolate accumulation in bean leaves treated with α-hydroxy-2-pyridinemethanesulfonic acid (α-HPMS), the glycolate oxidase inhibitor.
    Kamińska Z; Maleszewski S
    Photosynth Res; 1980 Mar; 1(1):45-51. PubMed ID: 24469983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glycolate stimulation of oxygen evolution during photosynthesis.
    Nelson EB; Tolbert NE; Hess JL
    Plant Physiol; 1969 Jan; 44(1):55-9. PubMed ID: 5775850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation.
    Hatch MD; Slack CR
    Biochem J; 1966 Oct; 101(1):103-11. PubMed ID: 5971771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Cold Hardening on the Components of Respiratory Decarboxylation in the Light and in the Dark in Leaves of Winter Rye.
    Hurry V; Keerberg O; Parnik T; Oquist G; Gardestrom P
    Plant Physiol; 1996 Jul; 111(3):713-719. PubMed ID: 12226322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Pigment biosynthesis in negative temperature in lichens and hibernating plants].
    Godnev TN; Khodasevich EV; Arnautova AI
    Dokl Akad Nauk SSSR; 1966 Mar; 167(2):451-3. PubMed ID: 5998107
    [No Abstract]   [Full Text] [Related]  

  • 36. Mechanism of C4 photosynthesis in Chloris gayana: pool sizes and kinetics of 14CO2 incorporation into 4-carbon and 3-carbon intermediates.
    Hatch MD
    Arch Biochem Biophys; 1979 Apr; 194(1):117-27. PubMed ID: 443796
    [No Abstract]   [Full Text] [Related]  

  • 37. C1402 assimilation in Lilium regale with reference to gamma-methyleneglutamic acid.
    WICKSON ME; TOWERS GH
    Can J Biochem Physiol; 1956 May; 34(3):502-10. PubMed ID: 13316575
    [No Abstract]   [Full Text] [Related]  

  • 38. [Formation of molecular hydrogen by green photosynthesizing bacteria].
    Gogotov IN; Kondrat'eva EN
    Dokl Akad Nauk SSSR; 1967 Jul; 175(3):714-7. PubMed ID: 5623178
    [No Abstract]   [Full Text] [Related]  

  • 39. Differential labelling of ribonucleic acid in subfractions of rye (Secale cereale) leaf mitochondria.
    Rytel M; Golaszewski T; Szarkowski JW
    Bull Acad Pol Sci Biol; 1969; 17(11):651-3. PubMed ID: 5387506
    [No Abstract]   [Full Text] [Related]  

  • 40. Measurement of radioactivity of pyruvate and other 2-oxo-acids labelled at the 1-position.
    van Laack HL; Janssen AJ; Ruitenbeek W; Trijbels JM; Sengers RC; Gabreëls FJ
    Clin Chim Acta; 1986 Apr; 156(1):115-8. PubMed ID: 3084138
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.